Changes
On December 16, 2024 at 7:09:08 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in In Situ Framework for Coupling Simulation and Machine Learning with Application to CFD -
Changed value of field
doi_date_published
to2024-12-16
in In Situ Framework for Coupling Simulation and Machine Learning with Application to CFD -
Added resource Original Metadata to In Situ Framework for Coupling Simulation and Machine Learning with Application to CFD
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Riccardo Balin", | 3 | "author": "Riccardo Balin", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2306.12900", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2306.12900", | ||
8 | "doi": "10.57702/h0jq94vp", | 8 | "doi": "10.57702/h0jq94vp", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-16", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Andrew Shao", | 15 | "extra_author": "Andrew Shao", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Stephen Becker", | 19 | "extra_author": "Stephen Becker", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Filippo Simini", | 23 | "extra_author": "Filippo Simini", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Alessandro Rigazzi", | 27 | "extra_author": "Alessandro Rigazzi", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | }, | 29 | }, | ||
30 | { | 30 | { | ||
31 | "extra_author": "Alireza Doostan", | 31 | "extra_author": "Alireza Doostan", | ||
32 | "orcid": "" | 32 | "orcid": "" | ||
33 | }, | 33 | }, | ||
34 | { | 34 | { | ||
35 | "extra_author": "Kenneth E. Jansen", | 35 | "extra_author": "Kenneth E. Jansen", | ||
36 | "orcid": "" | 36 | "orcid": "" | ||
37 | }, | 37 | }, | ||
38 | { | 38 | { | ||
39 | "extra_author": "Cooper Simpson", | 39 | "extra_author": "Cooper Simpson", | ||
40 | "orcid": "" | 40 | "orcid": "" | ||
41 | }, | 41 | }, | ||
42 | { | 42 | { | ||
43 | "extra_author": "Matthew Ellis", | 43 | "extra_author": "Matthew Ellis", | ||
44 | "orcid": "" | 44 | "orcid": "" | ||
45 | }, | 45 | }, | ||
46 | { | 46 | { | ||
47 | "extra_author": "John A. Evans", | 47 | "extra_author": "John A. Evans", | ||
48 | "orcid": "" | 48 | "orcid": "" | ||
49 | } | 49 | } | ||
50 | ], | 50 | ], | ||
51 | "groups": [ | 51 | "groups": [ | ||
52 | { | 52 | { | ||
53 | "description": "", | 53 | "description": "", | ||
54 | "display_name": "Computational Fluid Dynamics", | 54 | "display_name": "Computational Fluid Dynamics", | ||
55 | "id": "30968312-bf87-4a2e-ae82-740f17231edd", | 55 | "id": "30968312-bf87-4a2e-ae82-740f17231edd", | ||
56 | "image_display_url": "", | 56 | "image_display_url": "", | ||
57 | "name": "computational-fluid-dynamics", | 57 | "name": "computational-fluid-dynamics", | ||
58 | "title": "Computational Fluid Dynamics" | 58 | "title": "Computational Fluid Dynamics" | ||
59 | }, | 59 | }, | ||
60 | { | 60 | { | ||
61 | "description": "", | 61 | "description": "", | ||
62 | "display_name": "High-Performance Computing", | 62 | "display_name": "High-Performance Computing", | ||
63 | "id": "ff5d55e2-aa22-4493-a70e-153b1d8de824", | 63 | "id": "ff5d55e2-aa22-4493-a70e-153b1d8de824", | ||
64 | "image_display_url": "", | 64 | "image_display_url": "", | ||
65 | "name": "high-performance-computing", | 65 | "name": "high-performance-computing", | ||
66 | "title": "High-Performance Computing" | 66 | "title": "High-Performance Computing" | ||
67 | }, | 67 | }, | ||
68 | { | 68 | { | ||
69 | "description": "", | 69 | "description": "", | ||
70 | "display_name": "Machine Learning", | 70 | "display_name": "Machine Learning", | ||
71 | "id": "1d8623c9-adbd-4f91-be1e-53847c4ac32a", | 71 | "id": "1d8623c9-adbd-4f91-be1e-53847c4ac32a", | ||
72 | "image_display_url": "", | 72 | "image_display_url": "", | ||
73 | "name": "machine-learning", | 73 | "name": "machine-learning", | ||
74 | "title": "Machine Learning" | 74 | "title": "Machine Learning" | ||
75 | } | 75 | } | ||
76 | ], | 76 | ], | ||
77 | "id": "548d2d57-e74e-480c-81ab-5223ddbbc242", | 77 | "id": "548d2d57-e74e-480c-81ab-5223ddbbc242", | ||
78 | "isopen": false, | 78 | "isopen": false, | ||
79 | "landing_page": "https://doi.org/10.1109/MLHPC54614.2021.00008", | 79 | "landing_page": "https://doi.org/10.1109/MLHPC54614.2021.00008", | ||
80 | "license_title": null, | 80 | "license_title": null, | ||
81 | "link_orkg": "", | 81 | "link_orkg": "", | ||
82 | "metadata_created": "2024-12-16T19:09:06.710894", | 82 | "metadata_created": "2024-12-16T19:09:06.710894", | ||
n | 83 | "metadata_modified": "2024-12-16T19:09:06.710899", | n | 83 | "metadata_modified": "2024-12-16T19:09:07.092184", |
84 | "name": | 84 | "name": | ||
85 | for-coupling-simulation-and-machine-learning-with-application-to-cfd", | 85 | for-coupling-simulation-and-machine-learning-with-application-to-cfd", | ||
86 | "notes": "Recent years have seen many successful applications of | 86 | "notes": "Recent years have seen many successful applications of | ||
87 | machine learning (ML) to facilitate fluid dynamic computations. As | 87 | machine learning (ML) to facilitate fluid dynamic computations. As | ||
88 | simulations grow, generating new training datasets for traditional | 88 | simulations grow, generating new training datasets for traditional | ||
89 | offline learning creates I/O and storage bottlenecks. Additionally, | 89 | offline learning creates I/O and storage bottlenecks. Additionally, | ||
90 | performing inference at runtime requires non-trivial coupling of ML | 90 | performing inference at runtime requires non-trivial coupling of ML | ||
91 | framework libraries with simulation codes.", | 91 | framework libraries with simulation codes.", | ||
n | 92 | "num_resources": 0, | n | 92 | "num_resources": 1, |
93 | "num_tags": 5, | 93 | "num_tags": 5, | ||
94 | "organization": { | 94 | "organization": { | ||
95 | "approval_status": "approved", | 95 | "approval_status": "approved", | ||
96 | "created": "2024-11-25T12:11:38.292601", | 96 | "created": "2024-11-25T12:11:38.292601", | ||
97 | "description": "", | 97 | "description": "", | ||
98 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 98 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
99 | "image_url": "", | 99 | "image_url": "", | ||
100 | "is_organization": true, | 100 | "is_organization": true, | ||
101 | "name": "no-organization", | 101 | "name": "no-organization", | ||
102 | "state": "active", | 102 | "state": "active", | ||
103 | "title": "No Organization", | 103 | "title": "No Organization", | ||
104 | "type": "organization" | 104 | "type": "organization" | ||
105 | }, | 105 | }, | ||
106 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 106 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
107 | "private": false, | 107 | "private": false, | ||
108 | "relationships_as_object": [], | 108 | "relationships_as_object": [], | ||
109 | "relationships_as_subject": [], | 109 | "relationships_as_subject": [], | ||
t | 110 | "resources": [], | t | 110 | "resources": [ |
111 | { | ||||
112 | "cache_last_updated": null, | ||||
113 | "cache_url": null, | ||||
114 | "created": "2024-12-16T18:25:39", | ||||
115 | "data": [ | ||||
116 | "dcterms:title", | ||||
117 | "dcterms:accessRights", | ||||
118 | "dcterms:creator", | ||||
119 | "dcterms:description", | ||||
120 | "dcterms:issued", | ||||
121 | "dcterms:language", | ||||
122 | "dcterms:identifier", | ||||
123 | "dcat:theme", | ||||
124 | "dcterms:type", | ||||
125 | "dcat:keyword", | ||||
126 | "dcat:landingPage", | ||||
127 | "dcterms:hasVersion", | ||||
128 | "dcterms:format", | ||||
129 | "mls:task", | ||||
130 | "datacite:isDescribedBy" | ||||
131 | ], | ||||
132 | "description": "The json representation of the dataset with its | ||||
133 | distributions based on DCAT.", | ||||
134 | "format": "JSON", | ||||
135 | "hash": "", | ||||
136 | "id": "9fbc5e6e-dd64-4a84-a0ee-8476234c72bc", | ||||
137 | "last_modified": "2024-12-16T19:09:07.084094", | ||||
138 | "metadata_modified": "2024-12-16T19:09:07.094967", | ||||
139 | "mimetype": "application/json", | ||||
140 | "mimetype_inner": null, | ||||
141 | "name": "Original Metadata", | ||||
142 | "package_id": "548d2d57-e74e-480c-81ab-5223ddbbc242", | ||||
143 | "position": 0, | ||||
144 | "resource_type": null, | ||||
145 | "size": 1244, | ||||
146 | "state": "active", | ||||
147 | "url": | ||||
148 | resource/9fbc5e6e-dd64-4a84-a0ee-8476234c72bc/download/metadata.json", | ||||
149 | "url_type": "upload" | ||||
150 | } | ||||
151 | ], | ||||
111 | "services_used_list": "", | 152 | "services_used_list": "", | ||
112 | "state": "active", | 153 | "state": "active", | ||
113 | "tags": [ | 154 | "tags": [ | ||
114 | { | 155 | { | ||
115 | "display_name": "CFD", | 156 | "display_name": "CFD", | ||
116 | "id": "b0994449-1169-46c3-aa16-7ba02a5cc502", | 157 | "id": "b0994449-1169-46c3-aa16-7ba02a5cc502", | ||
117 | "name": "CFD", | 158 | "name": "CFD", | ||
118 | "state": "active", | 159 | "state": "active", | ||
119 | "vocabulary_id": null | 160 | "vocabulary_id": null | ||
120 | }, | 161 | }, | ||
121 | { | 162 | { | ||
122 | "display_name": "HPC", | 163 | "display_name": "HPC", | ||
123 | "id": "b4ec1b61-4907-468a-b39e-8b21ff90bd70", | 164 | "id": "b4ec1b61-4907-468a-b39e-8b21ff90bd70", | ||
124 | "name": "HPC", | 165 | "name": "HPC", | ||
125 | "state": "active", | 166 | "state": "active", | ||
126 | "vocabulary_id": null | 167 | "vocabulary_id": null | ||
127 | }, | 168 | }, | ||
128 | { | 169 | { | ||
129 | "display_name": "In situ training", | 170 | "display_name": "In situ training", | ||
130 | "id": "c4ce19d9-7cf1-4a64-96b1-0672285c456d", | 171 | "id": "c4ce19d9-7cf1-4a64-96b1-0672285c456d", | ||
131 | "name": "In situ training", | 172 | "name": "In situ training", | ||
132 | "state": "active", | 173 | "state": "active", | ||
133 | "vocabulary_id": null | 174 | "vocabulary_id": null | ||
134 | }, | 175 | }, | ||
135 | { | 176 | { | ||
136 | "display_name": "Inference", | 177 | "display_name": "Inference", | ||
137 | "id": "77fb7135-3eab-4802-ba83-93604349dfec", | 178 | "id": "77fb7135-3eab-4802-ba83-93604349dfec", | ||
138 | "name": "Inference", | 179 | "name": "Inference", | ||
139 | "state": "active", | 180 | "state": "active", | ||
140 | "vocabulary_id": null | 181 | "vocabulary_id": null | ||
141 | }, | 182 | }, | ||
142 | { | 183 | { | ||
143 | "display_name": "ML", | 184 | "display_name": "ML", | ||
144 | "id": "27739c8a-6191-4948-8cdc-15b2b02e58db", | 185 | "id": "27739c8a-6191-4948-8cdc-15b2b02e58db", | ||
145 | "name": "ML", | 186 | "name": "ML", | ||
146 | "state": "active", | 187 | "state": "active", | ||
147 | "vocabulary_id": null | 188 | "vocabulary_id": null | ||
148 | } | 189 | } | ||
149 | ], | 190 | ], | ||
150 | "title": "In Situ Framework for Coupling Simulation and Machine | 191 | "title": "In Situ Framework for Coupling Simulation and Machine | ||
151 | Learning with Application to CFD", | 192 | Learning with Application to CFD", | ||
152 | "type": "dataset", | 193 | "type": "dataset", | ||
153 | "version": "" | 194 | "version": "" | ||
154 | } | 195 | } |