Changes
On December 2, 2024 at 11:40:55 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Im2win: An Efficient Convolution Paradigm on GPU -
Changed value of field
doi_date_published
to2024-12-02
in Im2win: An Efficient Convolution Paradigm on GPU -
Added resource Original Metadata to Im2win: An Efficient Convolution Paradigm on GPU
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Shuai Lu", | 3 | "author": "Shuai Lu", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2306.14316", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2306.14316", | ||
8 | "doi": "10.57702/ux49oyvq", | 8 | "doi": "10.57702/ux49oyvq", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-02", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Jun Chu", | 15 | "extra_author": "Jun Chu", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Luanzheng Guo", | 19 | "extra_author": "Luanzheng Guo", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Xu T. Liu", | 23 | "extra_author": "Xu T. Liu", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | } | 25 | } | ||
26 | ], | 26 | ], | ||
27 | "groups": [ | 27 | "groups": [ | ||
28 | { | 28 | { | ||
29 | "description": "", | 29 | "description": "", | ||
30 | "display_name": "Convolution", | 30 | "display_name": "Convolution", | ||
31 | "id": "9352b5c7-8d70-493c-98b2-848503b56d8b", | 31 | "id": "9352b5c7-8d70-493c-98b2-848503b56d8b", | ||
32 | "image_display_url": "", | 32 | "image_display_url": "", | ||
33 | "name": "convolution", | 33 | "name": "convolution", | ||
34 | "title": "Convolution" | 34 | "title": "Convolution" | ||
35 | }, | 35 | }, | ||
36 | { | 36 | { | ||
37 | "description": "", | 37 | "description": "", | ||
38 | "display_name": "Deep Learning", | 38 | "display_name": "Deep Learning", | ||
39 | "id": "d2734132-7098-4cc5-9f4c-5f9b6e1d7922", | 39 | "id": "d2734132-7098-4cc5-9f4c-5f9b6e1d7922", | ||
40 | "image_display_url": "", | 40 | "image_display_url": "", | ||
41 | "name": "deep-learning", | 41 | "name": "deep-learning", | ||
42 | "title": "Deep Learning" | 42 | "title": "Deep Learning" | ||
43 | }, | 43 | }, | ||
44 | { | 44 | { | ||
45 | "description": "", | 45 | "description": "", | ||
46 | "display_name": "GPU", | 46 | "display_name": "GPU", | ||
47 | "id": "322693db-d904-4f8b-a7eb-4d4306633a46", | 47 | "id": "322693db-d904-4f8b-a7eb-4d4306633a46", | ||
48 | "image_display_url": "", | 48 | "image_display_url": "", | ||
49 | "name": "gpu", | 49 | "name": "gpu", | ||
50 | "title": "GPU" | 50 | "title": "GPU" | ||
51 | } | 51 | } | ||
52 | ], | 52 | ], | ||
53 | "id": "44470ded-b9e4-4897-966b-6aa696011d27", | 53 | "id": "44470ded-b9e4-4897-966b-6aa696011d27", | ||
54 | "isopen": false, | 54 | "isopen": false, | ||
55 | "landing_page": "", | 55 | "landing_page": "", | ||
56 | "license_title": null, | 56 | "license_title": null, | ||
57 | "link_orkg": "", | 57 | "link_orkg": "", | ||
58 | "metadata_created": "2024-12-02T23:40:53.411731", | 58 | "metadata_created": "2024-12-02T23:40:53.411731", | ||
n | 59 | "metadata_modified": "2024-12-02T23:40:53.411737", | n | 59 | "metadata_modified": "2024-12-02T23:40:53.915484", |
60 | "name": "im2win--an-efficient-convolution-paradigm-on-gpu", | 60 | "name": "im2win--an-efficient-convolution-paradigm-on-gpu", | ||
61 | "notes": "Convolutional neural network (CNN) is an important network | 61 | "notes": "Convolutional neural network (CNN) is an important network | ||
62 | model widely used in computer vision, image processing, and scientific | 62 | model widely used in computer vision, image processing, and scientific | ||
63 | computing. CNN consists of an input layer, an output layer, and | 63 | computing. CNN consists of an input layer, an output layer, and | ||
64 | convolutional layers between them.", | 64 | convolutional layers between them.", | ||
n | 65 | "num_resources": 0, | n | 65 | "num_resources": 1, |
66 | "num_tags": 4, | 66 | "num_tags": 4, | ||
67 | "organization": { | 67 | "organization": { | ||
68 | "approval_status": "approved", | 68 | "approval_status": "approved", | ||
69 | "created": "2024-11-25T12:11:38.292601", | 69 | "created": "2024-11-25T12:11:38.292601", | ||
70 | "description": "", | 70 | "description": "", | ||
71 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 71 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
72 | "image_url": "", | 72 | "image_url": "", | ||
73 | "is_organization": true, | 73 | "is_organization": true, | ||
74 | "name": "no-organization", | 74 | "name": "no-organization", | ||
75 | "state": "active", | 75 | "state": "active", | ||
76 | "title": "No Organization", | 76 | "title": "No Organization", | ||
77 | "type": "organization" | 77 | "type": "organization" | ||
78 | }, | 78 | }, | ||
79 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 79 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
80 | "private": false, | 80 | "private": false, | ||
81 | "relationships_as_object": [], | 81 | "relationships_as_object": [], | ||
82 | "relationships_as_subject": [], | 82 | "relationships_as_subject": [], | ||
t | 83 | "resources": [], | t | 83 | "resources": [ |
84 | { | ||||
85 | "cache_last_updated": null, | ||||
86 | "cache_url": null, | ||||
87 | "created": "2024-12-03T00:20:35", | ||||
88 | "data": [ | ||||
89 | "dcterms:title", | ||||
90 | "dcterms:accessRights", | ||||
91 | "dcterms:creator", | ||||
92 | "dcterms:description", | ||||
93 | "dcterms:issued", | ||||
94 | "dcterms:language", | ||||
95 | "dcterms:identifier", | ||||
96 | "dcat:theme", | ||||
97 | "dcterms:type", | ||||
98 | "dcat:keyword", | ||||
99 | "dcat:landingPage", | ||||
100 | "dcterms:hasVersion", | ||||
101 | "dcterms:format", | ||||
102 | "mls:task", | ||||
103 | "datacite:isDescribedBy" | ||||
104 | ], | ||||
105 | "description": "The json representation of the dataset with its | ||||
106 | distributions based on DCAT.", | ||||
107 | "format": "JSON", | ||||
108 | "hash": "", | ||||
109 | "id": "7af23485-68ec-49c6-bfea-1523e2602df3", | ||||
110 | "last_modified": "2024-12-02T23:40:53.908162", | ||||
111 | "metadata_modified": "2024-12-02T23:40:53.918334", | ||||
112 | "mimetype": "application/json", | ||||
113 | "mimetype_inner": null, | ||||
114 | "name": "Original Metadata", | ||||
115 | "package_id": "44470ded-b9e4-4897-966b-6aa696011d27", | ||||
116 | "position": 0, | ||||
117 | "resource_type": null, | ||||
118 | "size": 876, | ||||
119 | "state": "active", | ||||
120 | "url": | ||||
121 | resource/7af23485-68ec-49c6-bfea-1523e2602df3/download/metadata.json", | ||||
122 | "url_type": "upload" | ||||
123 | } | ||||
124 | ], | ||||
84 | "services_used_list": "", | 125 | "services_used_list": "", | ||
85 | "state": "active", | 126 | "state": "active", | ||
86 | "tags": [ | 127 | "tags": [ | ||
87 | { | 128 | { | ||
88 | "display_name": "Convolution", | 129 | "display_name": "Convolution", | ||
89 | "id": "6aed36ae-7117-4105-bc71-b0858a791dc5", | 130 | "id": "6aed36ae-7117-4105-bc71-b0858a791dc5", | ||
90 | "name": "Convolution", | 131 | "name": "Convolution", | ||
91 | "state": "active", | 132 | "state": "active", | ||
92 | "vocabulary_id": null | 133 | "vocabulary_id": null | ||
93 | }, | 134 | }, | ||
94 | { | 135 | { | ||
95 | "display_name": "Deep Learning", | 136 | "display_name": "Deep Learning", | ||
96 | "id": "3feb7b21-e049-4dca-9372-0d438c483f6a", | 137 | "id": "3feb7b21-e049-4dca-9372-0d438c483f6a", | ||
97 | "name": "Deep Learning", | 138 | "name": "Deep Learning", | ||
98 | "state": "active", | 139 | "state": "active", | ||
99 | "vocabulary_id": null | 140 | "vocabulary_id": null | ||
100 | }, | 141 | }, | ||
101 | { | 142 | { | ||
102 | "display_name": "GPU", | 143 | "display_name": "GPU", | ||
103 | "id": "682b0cea-6001-4597-b2cc-7e67edf48681", | 144 | "id": "682b0cea-6001-4597-b2cc-7e67edf48681", | ||
104 | "name": "GPU", | 145 | "name": "GPU", | ||
105 | "state": "active", | 146 | "state": "active", | ||
106 | "vocabulary_id": null | 147 | "vocabulary_id": null | ||
107 | }, | 148 | }, | ||
108 | { | 149 | { | ||
109 | "display_name": "Neural Networks", | 150 | "display_name": "Neural Networks", | ||
110 | "id": "b8e60d98-1c66-40d1-b944-74216c2bd378", | 151 | "id": "b8e60d98-1c66-40d1-b944-74216c2bd378", | ||
111 | "name": "Neural Networks", | 152 | "name": "Neural Networks", | ||
112 | "state": "active", | 153 | "state": "active", | ||
113 | "vocabulary_id": null | 154 | "vocabulary_id": null | ||
114 | } | 155 | } | ||
115 | ], | 156 | ], | ||
116 | "title": "Im2win: An Efficient Convolution Paradigm on GPU", | 157 | "title": "Im2win: An Efficient Convolution Paradigm on GPU", | ||
117 | "type": "dataset", | 158 | "type": "dataset", | ||
118 | "version": "" | 159 | "version": "" | ||
119 | } | 160 | } |