Changes
On December 3, 2024 at 10:20:53 AM UTC, admin:
-
Changed value of field
doi_date_published
to2024-12-03
in MVTec-AD–A comprehensive real-world dataset for unsupervised anomaly detection -
Changed value of field
doi_status
toTrue
in MVTec-AD–A comprehensive real-world dataset for unsupervised anomaly detection -
Added resource Original Metadata to MVTec-AD–A comprehensive real-world dataset for unsupervised anomaly detection
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Jiawei Zhan", | 3 | "author": "Jiawei Zhan", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "", | 7 | "defined_in": "", | ||
8 | "doi": "10.57702/ztyezqrn", | 8 | "doi": "10.57702/ztyezqrn", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-03", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Jinxiang Lai", | 15 | "extra_author": "Jinxiang Lai", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Bin-Bin Gao", | 19 | "extra_author": "Bin-Bin Gao", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Jun Liu", | 23 | "extra_author": "Jun Liu", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Xiaochen Chen", | 27 | "extra_author": "Xiaochen Chen", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | }, | 29 | }, | ||
30 | { | 30 | { | ||
31 | "extra_author": "Chengjie Wang", | 31 | "extra_author": "Chengjie Wang", | ||
32 | "orcid": "" | 32 | "orcid": "" | ||
33 | } | 33 | } | ||
34 | ], | 34 | ], | ||
35 | "groups": [ | 35 | "groups": [ | ||
36 | { | 36 | { | ||
37 | "description": "", | 37 | "description": "", | ||
38 | "display_name": "Anomaly Detection", | 38 | "display_name": "Anomaly Detection", | ||
39 | "id": "469caeeb-2eee-4858-a0f3-692b4da09dfe", | 39 | "id": "469caeeb-2eee-4858-a0f3-692b4da09dfe", | ||
40 | "image_display_url": "", | 40 | "image_display_url": "", | ||
41 | "name": "anomaly-detection", | 41 | "name": "anomaly-detection", | ||
42 | "title": "Anomaly Detection" | 42 | "title": "Anomaly Detection" | ||
43 | }, | 43 | }, | ||
44 | { | 44 | { | ||
45 | "description": "", | 45 | "description": "", | ||
46 | "display_name": "Industrial Image Processing", | 46 | "display_name": "Industrial Image Processing", | ||
47 | "id": "b6b7db49-ef6d-47df-b435-b7ae1080d02b", | 47 | "id": "b6b7db49-ef6d-47df-b435-b7ae1080d02b", | ||
48 | "image_display_url": "", | 48 | "image_display_url": "", | ||
49 | "name": "industrial-image-processing", | 49 | "name": "industrial-image-processing", | ||
50 | "title": "Industrial Image Processing" | 50 | "title": "Industrial Image Processing" | ||
51 | } | 51 | } | ||
52 | ], | 52 | ], | ||
53 | "id": "a1e67ea1-8cca-4ba1-9e0f-5d31a49778f8", | 53 | "id": "a1e67ea1-8cca-4ba1-9e0f-5d31a49778f8", | ||
54 | "isopen": false, | 54 | "isopen": false, | ||
55 | "landing_page": "https://www.mvtec-ad.com/", | 55 | "landing_page": "https://www.mvtec-ad.com/", | ||
56 | "license_title": null, | 56 | "license_title": null, | ||
57 | "link_orkg": "", | 57 | "link_orkg": "", | ||
58 | "metadata_created": "2024-12-03T10:20:52.371786", | 58 | "metadata_created": "2024-12-03T10:20:52.371786", | ||
n | 59 | "metadata_modified": "2024-12-03T10:20:52.371791", | n | 59 | "metadata_modified": "2024-12-03T10:20:52.800154", |
60 | "name": | 60 | "name": | ||
61 | -comprehensive-real-world-dataset-for-unsupervised-anomaly-detection", | 61 | -comprehensive-real-world-dataset-for-unsupervised-anomaly-detection", | ||
62 | "notes": "Anomaly detection, the technique of identifying abnormal | 62 | "notes": "Anomaly detection, the technique of identifying abnormal | ||
63 | samples using only normal samples, has attracted widespread interest | 63 | samples using only normal samples, has attracted widespread interest | ||
64 | in industry. Existing one-model-per-category methods often struggle | 64 | in industry. Existing one-model-per-category methods often struggle | ||
65 | with limited generalization capabilities due to their focus on a | 65 | with limited generalization capabilities due to their focus on a | ||
66 | single category, and can fail when encountering variations in product. | 66 | single category, and can fail when encountering variations in product. | ||
67 | Recent feature reconstruction methods, as representatives in | 67 | Recent feature reconstruction methods, as representatives in | ||
68 | one-model\u2013all-categories schemes, face challenges including | 68 | one-model\u2013all-categories schemes, face challenges including | ||
69 | reconstructing anomalous samples and blurry reconstructions.", | 69 | reconstructing anomalous samples and blurry reconstructions.", | ||
n | 70 | "num_resources": 0, | n | 70 | "num_resources": 1, |
71 | "num_tags": 3, | 71 | "num_tags": 3, | ||
72 | "organization": { | 72 | "organization": { | ||
73 | "approval_status": "approved", | 73 | "approval_status": "approved", | ||
74 | "created": "2024-11-25T12:11:38.292601", | 74 | "created": "2024-11-25T12:11:38.292601", | ||
75 | "description": "", | 75 | "description": "", | ||
76 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 76 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
77 | "image_url": "", | 77 | "image_url": "", | ||
78 | "is_organization": true, | 78 | "is_organization": true, | ||
79 | "name": "no-organization", | 79 | "name": "no-organization", | ||
80 | "state": "active", | 80 | "state": "active", | ||
81 | "title": "No Organization", | 81 | "title": "No Organization", | ||
82 | "type": "organization" | 82 | "type": "organization" | ||
83 | }, | 83 | }, | ||
84 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 84 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
85 | "private": false, | 85 | "private": false, | ||
86 | "relationships_as_object": [], | 86 | "relationships_as_object": [], | ||
87 | "relationships_as_subject": [], | 87 | "relationships_as_subject": [], | ||
t | 88 | "resources": [], | t | 88 | "resources": [ |
89 | { | ||||
90 | "cache_last_updated": null, | ||||
91 | "cache_url": null, | ||||
92 | "created": "2024-12-03T11:11:17", | ||||
93 | "data": [ | ||||
94 | "dcterms:title", | ||||
95 | "dcterms:accessRights", | ||||
96 | "dcterms:creator", | ||||
97 | "dcterms:description", | ||||
98 | "dcterms:issued", | ||||
99 | "dcterms:language", | ||||
100 | "dcterms:identifier", | ||||
101 | "dcat:theme", | ||||
102 | "dcterms:type", | ||||
103 | "dcat:keyword", | ||||
104 | "dcat:landingPage", | ||||
105 | "dcterms:hasVersion", | ||||
106 | "dcterms:format", | ||||
107 | "mls:task" | ||||
108 | ], | ||||
109 | "description": "The json representation of the dataset with its | ||||
110 | distributions based on DCAT.", | ||||
111 | "format": "JSON", | ||||
112 | "hash": "", | ||||
113 | "id": "dcaea43d-afd4-4189-a1bc-75983cbb50f1", | ||||
114 | "last_modified": "2024-12-03T10:20:52.792616", | ||||
115 | "metadata_modified": "2024-12-03T10:20:52.803245", | ||||
116 | "mimetype": "application/json", | ||||
117 | "mimetype_inner": null, | ||||
118 | "name": "Original Metadata", | ||||
119 | "package_id": "a1e67ea1-8cca-4ba1-9e0f-5d31a49778f8", | ||||
120 | "position": 0, | ||||
121 | "resource_type": null, | ||||
122 | "size": 1221, | ||||
123 | "state": "active", | ||||
124 | "url": | ||||
125 | resource/dcaea43d-afd4-4189-a1bc-75983cbb50f1/download/metadata.json", | ||||
126 | "url_type": "upload" | ||||
127 | } | ||||
128 | ], | ||||
89 | "services_used_list": "", | 129 | "services_used_list": "", | ||
90 | "state": "active", | 130 | "state": "active", | ||
91 | "tags": [ | 131 | "tags": [ | ||
92 | { | 132 | { | ||
93 | "display_name": "Anomaly detection", | 133 | "display_name": "Anomaly detection", | ||
94 | "id": "39ccc478-5013-4d7a-a9de-4d50608b7ec6", | 134 | "id": "39ccc478-5013-4d7a-a9de-4d50608b7ec6", | ||
95 | "name": "Anomaly detection", | 135 | "name": "Anomaly detection", | ||
96 | "state": "active", | 136 | "state": "active", | ||
97 | "vocabulary_id": null | 137 | "vocabulary_id": null | ||
98 | }, | 138 | }, | ||
99 | { | 139 | { | ||
100 | "display_name": "Industrial image processing", | 140 | "display_name": "Industrial image processing", | ||
101 | "id": "3a7b7409-a533-4f3c-b78e-274c3de981b0", | 141 | "id": "3a7b7409-a533-4f3c-b78e-274c3de981b0", | ||
102 | "name": "Industrial image processing", | 142 | "name": "Industrial image processing", | ||
103 | "state": "active", | 143 | "state": "active", | ||
104 | "vocabulary_id": null | 144 | "vocabulary_id": null | ||
105 | }, | 145 | }, | ||
106 | { | 146 | { | ||
107 | "display_name": "Real-world dataset", | 147 | "display_name": "Real-world dataset", | ||
108 | "id": "ea010c7d-90b7-4cb9-a032-ec248aa7398b", | 148 | "id": "ea010c7d-90b7-4cb9-a032-ec248aa7398b", | ||
109 | "name": "Real-world dataset", | 149 | "name": "Real-world dataset", | ||
110 | "state": "active", | 150 | "state": "active", | ||
111 | "vocabulary_id": null | 151 | "vocabulary_id": null | ||
112 | } | 152 | } | ||
113 | ], | 153 | ], | ||
114 | "title": "MVTec-AD\u2013A comprehensive real-world dataset for | 154 | "title": "MVTec-AD\u2013A comprehensive real-world dataset for | ||
115 | unsupervised anomaly detection", | 155 | unsupervised anomaly detection", | ||
116 | "type": "dataset", | 156 | "type": "dataset", | ||
117 | "version": "" | 157 | "version": "" | ||
118 | } | 158 | } |