Changes
On December 16, 2024 at 8:44:05 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Structured Convolutional Kernel Networks for Airline Crew Scheduling -
Changed value of field
doi_date_published
to2024-12-16
in Structured Convolutional Kernel Networks for Airline Crew Scheduling -
Added resource Original Metadata to Structured Convolutional Kernel Networks for Airline Crew Scheduling
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Yassine Yaakoubi", | 3 | "author": "Yassine Yaakoubi", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2105.11646", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2105.11646", | ||
8 | "doi": "10.57702/emchq9v2", | 8 | "doi": "10.57702/emchq9v2", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-16", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Fran\u00e7ois Soumis", | 15 | "extra_author": "Fran\u00e7ois Soumis", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Simon Lacoste-Julien", | 19 | "extra_author": "Simon Lacoste-Julien", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | } | 21 | } | ||
22 | ], | 22 | ], | ||
23 | "groups": [ | 23 | "groups": [ | ||
24 | { | 24 | { | ||
25 | "description": "", | 25 | "description": "", | ||
26 | "display_name": "Airline Crew Scheduling", | 26 | "display_name": "Airline Crew Scheduling", | ||
27 | "id": "4b95f84f-b313-4408-b716-9f2aee422803", | 27 | "id": "4b95f84f-b313-4408-b716-9f2aee422803", | ||
28 | "image_display_url": "", | 28 | "image_display_url": "", | ||
29 | "name": "airline-crew-scheduling", | 29 | "name": "airline-crew-scheduling", | ||
30 | "title": "Airline Crew Scheduling" | 30 | "title": "Airline Crew Scheduling" | ||
31 | }, | 31 | }, | ||
32 | { | 32 | { | ||
33 | "description": "", | 33 | "description": "", | ||
34 | "display_name": "Machine Learning", | 34 | "display_name": "Machine Learning", | ||
35 | "id": "1d8623c9-adbd-4f91-be1e-53847c4ac32a", | 35 | "id": "1d8623c9-adbd-4f91-be1e-53847c4ac32a", | ||
36 | "image_display_url": "", | 36 | "image_display_url": "", | ||
37 | "name": "machine-learning", | 37 | "name": "machine-learning", | ||
38 | "title": "Machine Learning" | 38 | "title": "Machine Learning" | ||
39 | } | 39 | } | ||
40 | ], | 40 | ], | ||
41 | "id": "626738da-0050-4041-afac-9c3cfaeef9bb", | 41 | "id": "626738da-0050-4041-afac-9c3cfaeef9bb", | ||
42 | "isopen": false, | 42 | "isopen": false, | ||
43 | "landing_page": "https://github.com/Yaakoubi/Struct-CKN", | 43 | "landing_page": "https://github.com/Yaakoubi/Struct-CKN", | ||
44 | "license_title": null, | 44 | "license_title": null, | ||
45 | "link_orkg": "", | 45 | "link_orkg": "", | ||
46 | "metadata_created": "2024-12-16T20:44:04.368799", | 46 | "metadata_created": "2024-12-16T20:44:04.368799", | ||
n | 47 | "metadata_modified": "2024-12-16T20:44:04.368803", | n | 47 | "metadata_modified": "2024-12-16T20:44:04.793567", |
48 | "name": | 48 | "name": | ||
49 | structured-convolutional-kernel-networks-for-airline-crew-scheduling", | 49 | structured-convolutional-kernel-networks-for-airline-crew-scheduling", | ||
50 | "notes": "The Struct-CKN predictor is used to construct initial | 50 | "notes": "The Struct-CKN predictor is used to construct initial | ||
51 | clusters and an initial solution for the Crew Pairing Problem (CPP) | 51 | clusters and an initial solution for the Crew Pairing Problem (CPP) | ||
52 | solver.", | 52 | solver.", | ||
n | 53 | "num_resources": 0, | n | 53 | "num_resources": 1, |
54 | "num_tags": 3, | 54 | "num_tags": 3, | ||
55 | "organization": { | 55 | "organization": { | ||
56 | "approval_status": "approved", | 56 | "approval_status": "approved", | ||
57 | "created": "2024-11-25T12:11:38.292601", | 57 | "created": "2024-11-25T12:11:38.292601", | ||
58 | "description": "", | 58 | "description": "", | ||
59 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 59 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
60 | "image_url": "", | 60 | "image_url": "", | ||
61 | "is_organization": true, | 61 | "is_organization": true, | ||
62 | "name": "no-organization", | 62 | "name": "no-organization", | ||
63 | "state": "active", | 63 | "state": "active", | ||
64 | "title": "No Organization", | 64 | "title": "No Organization", | ||
65 | "type": "organization" | 65 | "type": "organization" | ||
66 | }, | 66 | }, | ||
67 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 67 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
68 | "private": false, | 68 | "private": false, | ||
69 | "relationships_as_object": [], | 69 | "relationships_as_object": [], | ||
70 | "relationships_as_subject": [], | 70 | "relationships_as_subject": [], | ||
t | 71 | "resources": [], | t | 71 | "resources": [ |
72 | { | ||||
73 | "cache_last_updated": null, | ||||
74 | "cache_url": null, | ||||
75 | "created": "2024-12-16T18:25:46", | ||||
76 | "data": [ | ||||
77 | "dcterms:title", | ||||
78 | "dcterms:accessRights", | ||||
79 | "dcterms:creator", | ||||
80 | "dcterms:description", | ||||
81 | "dcterms:issued", | ||||
82 | "dcterms:language", | ||||
83 | "dcterms:identifier", | ||||
84 | "dcat:theme", | ||||
85 | "dcterms:type", | ||||
86 | "dcat:keyword", | ||||
87 | "dcat:landingPage", | ||||
88 | "dcterms:hasVersion", | ||||
89 | "dcterms:format", | ||||
90 | "mls:task", | ||||
91 | "datacite:isDescribedBy" | ||||
92 | ], | ||||
93 | "description": "The json representation of the dataset with its | ||||
94 | distributions based on DCAT.", | ||||
95 | "format": "JSON", | ||||
96 | "hash": "", | ||||
97 | "id": "2887c0e3-da5f-4c9e-8bb1-61a6f520b782", | ||||
98 | "last_modified": "2024-12-16T20:44:04.786121", | ||||
99 | "metadata_modified": "2024-12-16T20:44:04.796374", | ||||
100 | "mimetype": "application/json", | ||||
101 | "mimetype_inner": null, | ||||
102 | "name": "Original Metadata", | ||||
103 | "package_id": "626738da-0050-4041-afac-9c3cfaeef9bb", | ||||
104 | "position": 0, | ||||
105 | "resource_type": null, | ||||
106 | "size": 830, | ||||
107 | "state": "active", | ||||
108 | "url": | ||||
109 | resource/2887c0e3-da5f-4c9e-8bb1-61a6f520b782/download/metadata.json", | ||||
110 | "url_type": "upload" | ||||
111 | } | ||||
112 | ], | ||||
72 | "services_used_list": "", | 113 | "services_used_list": "", | ||
73 | "state": "active", | 114 | "state": "active", | ||
74 | "tags": [ | 115 | "tags": [ | ||
75 | { | 116 | { | ||
76 | "display_name": "Airline Scheduling", | 117 | "display_name": "Airline Scheduling", | ||
77 | "id": "16556bca-61eb-4bdd-bc9a-ec429da80a3a", | 118 | "id": "16556bca-61eb-4bdd-bc9a-ec429da80a3a", | ||
78 | "name": "Airline Scheduling", | 119 | "name": "Airline Scheduling", | ||
79 | "state": "active", | 120 | "state": "active", | ||
80 | "vocabulary_id": null | 121 | "vocabulary_id": null | ||
81 | }, | 122 | }, | ||
82 | { | 123 | { | ||
83 | "display_name": "Crew Pairing Problem", | 124 | "display_name": "Crew Pairing Problem", | ||
84 | "id": "5879c22a-96b8-4aad-8790-6145142f8083", | 125 | "id": "5879c22a-96b8-4aad-8790-6145142f8083", | ||
85 | "name": "Crew Pairing Problem", | 126 | "name": "Crew Pairing Problem", | ||
86 | "state": "active", | 127 | "state": "active", | ||
87 | "vocabulary_id": null | 128 | "vocabulary_id": null | ||
88 | }, | 129 | }, | ||
89 | { | 130 | { | ||
90 | "display_name": "Machine Learning", | 131 | "display_name": "Machine Learning", | ||
91 | "id": "c4f3defc-ca48-45a9-9217-ce35bd3ed73c", | 132 | "id": "c4f3defc-ca48-45a9-9217-ce35bd3ed73c", | ||
92 | "name": "Machine Learning", | 133 | "name": "Machine Learning", | ||
93 | "state": "active", | 134 | "state": "active", | ||
94 | "vocabulary_id": null | 135 | "vocabulary_id": null | ||
95 | } | 136 | } | ||
96 | ], | 137 | ], | ||
97 | "title": "Structured Convolutional Kernel Networks for Airline Crew | 138 | "title": "Structured Convolutional Kernel Networks for Airline Crew | ||
98 | Scheduling", | 139 | Scheduling", | ||
99 | "type": "dataset", | 140 | "type": "dataset", | ||
100 | "version": "" | 141 | "version": "" | ||
101 | } | 142 | } |