Changes
On December 16, 2024 at 7:04:28 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Point Cloud Video Anomaly Detection Based on Point Spatio-Temporal Auto-Encoder -
Changed value of field
doi_date_published
to2024-12-16
in Point Cloud Video Anomaly Detection Based on Point Spatio-Temporal Auto-Encoder -
Added resource Original Metadata to Point Cloud Video Anomaly Detection Based on Point Spatio-Temporal Auto-Encoder
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Tengjiao He", | 3 | "author": "Tengjiao He", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2306.04466", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2306.04466", | ||
8 | "doi": "10.57702/6qe22hjy", | 8 | "doi": "10.57702/6qe22hjy", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-16", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Wenguang Wang", | 15 | "extra_author": "Wenguang Wang", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | } | 17 | } | ||
18 | ], | 18 | ], | ||
19 | "groups": [ | 19 | "groups": [ | ||
20 | { | 20 | { | ||
21 | "description": "", | 21 | "description": "", | ||
22 | "display_name": "Video Anomaly Detection", | 22 | "display_name": "Video Anomaly Detection", | ||
23 | "id": "e8df4eca-f119-44dc-9a4d-9e203187b972", | 23 | "id": "e8df4eca-f119-44dc-9a4d-9e203187b972", | ||
24 | "image_display_url": "", | 24 | "image_display_url": "", | ||
25 | "name": "video-anomaly-detection", | 25 | "name": "video-anomaly-detection", | ||
26 | "title": "Video Anomaly Detection" | 26 | "title": "Video Anomaly Detection" | ||
27 | } | 27 | } | ||
28 | ], | 28 | ], | ||
29 | "id": "bb34760f-8197-4a3c-8541-025f551fdae6", | 29 | "id": "bb34760f-8197-4a3c-8541-025f551fdae6", | ||
30 | "isopen": false, | 30 | "isopen": false, | ||
31 | "landing_page": "https://arxiv.org/abs/2205.13713", | 31 | "landing_page": "https://arxiv.org/abs/2205.13713", | ||
32 | "license_title": null, | 32 | "license_title": null, | ||
33 | "link_orkg": "", | 33 | "link_orkg": "", | ||
34 | "metadata_created": "2024-12-16T19:04:26.888676", | 34 | "metadata_created": "2024-12-16T19:04:26.888676", | ||
n | 35 | "metadata_modified": "2024-12-16T19:04:26.888684", | n | 35 | "metadata_modified": "2024-12-16T19:04:27.257908", |
36 | "name": | 36 | "name": | ||
37 | -video-anomaly-detection-based-on-point-spatio-temporal-auto-encoder", | 37 | -video-anomaly-detection-based-on-point-spatio-temporal-auto-encoder", | ||
38 | "notes": "Video anomaly detection has great potential in enhancing | 38 | "notes": "Video anomaly detection has great potential in enhancing | ||
39 | safety in the production and monitoring of crucial areas. Currently, | 39 | safety in the production and monitoring of crucial areas. Currently, | ||
40 | most video anomaly detection methods are based on RGB modality, but | 40 | most video anomaly detection methods are based on RGB modality, but | ||
41 | its redundant semantic information may breach the privacy of residents | 41 | its redundant semantic information may breach the privacy of residents | ||
42 | or patients. The 3D data obtained by depth camera and LiDAR can | 42 | or patients. The 3D data obtained by depth camera and LiDAR can | ||
43 | accurately locate anomalous events in 3D space while preserving human | 43 | accurately locate anomalous events in 3D space while preserving human | ||
44 | posture and motion information.", | 44 | posture and motion information.", | ||
n | 45 | "num_resources": 0, | n | 45 | "num_resources": 1, |
46 | "num_tags": 5, | 46 | "num_tags": 5, | ||
47 | "organization": { | 47 | "organization": { | ||
48 | "approval_status": "approved", | 48 | "approval_status": "approved", | ||
49 | "created": "2024-11-25T12:11:38.292601", | 49 | "created": "2024-11-25T12:11:38.292601", | ||
50 | "description": "", | 50 | "description": "", | ||
51 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 51 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
52 | "image_url": "", | 52 | "image_url": "", | ||
53 | "is_organization": true, | 53 | "is_organization": true, | ||
54 | "name": "no-organization", | 54 | "name": "no-organization", | ||
55 | "state": "active", | 55 | "state": "active", | ||
56 | "title": "No Organization", | 56 | "title": "No Organization", | ||
57 | "type": "organization" | 57 | "type": "organization" | ||
58 | }, | 58 | }, | ||
59 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 59 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
60 | "private": false, | 60 | "private": false, | ||
61 | "relationships_as_object": [], | 61 | "relationships_as_object": [], | ||
62 | "relationships_as_subject": [], | 62 | "relationships_as_subject": [], | ||
t | 63 | "resources": [], | t | 63 | "resources": [ |
64 | { | ||||
65 | "cache_last_updated": null, | ||||
66 | "cache_url": null, | ||||
67 | "created": "2024-12-16T18:25:38", | ||||
68 | "data": [ | ||||
69 | "dcterms:title", | ||||
70 | "dcterms:accessRights", | ||||
71 | "dcterms:creator", | ||||
72 | "dcterms:description", | ||||
73 | "dcterms:issued", | ||||
74 | "dcterms:language", | ||||
75 | "dcterms:identifier", | ||||
76 | "dcat:theme", | ||||
77 | "dcterms:type", | ||||
78 | "dcat:keyword", | ||||
79 | "dcat:landingPage", | ||||
80 | "dcterms:hasVersion", | ||||
81 | "dcterms:format", | ||||
82 | "mls:task", | ||||
83 | "datacite:isDescribedBy" | ||||
84 | ], | ||||
85 | "description": "The json representation of the dataset with its | ||||
86 | distributions based on DCAT.", | ||||
87 | "format": "JSON", | ||||
88 | "hash": "", | ||||
89 | "id": "e5f83ae6-06da-486a-9f2e-b4d13ea9672e", | ||||
90 | "last_modified": "2024-12-16T19:04:27.250216", | ||||
91 | "metadata_modified": "2024-12-16T19:04:27.260779", | ||||
92 | "mimetype": "application/json", | ||||
93 | "mimetype_inner": null, | ||||
94 | "name": "Original Metadata", | ||||
95 | "package_id": "bb34760f-8197-4a3c-8541-025f551fdae6", | ||||
96 | "position": 0, | ||||
97 | "resource_type": null, | ||||
98 | "size": 1116, | ||||
99 | "state": "active", | ||||
100 | "url": | ||||
101 | resource/e5f83ae6-06da-486a-9f2e-b4d13ea9672e/download/metadata.json", | ||||
102 | "url_type": "upload" | ||||
103 | } | ||||
104 | ], | ||||
64 | "services_used_list": "", | 105 | "services_used_list": "", | ||
65 | "state": "active", | 106 | "state": "active", | ||
66 | "tags": [ | 107 | "tags": [ | ||
67 | { | 108 | { | ||
68 | "display_name": "3D data", | 109 | "display_name": "3D data", | ||
69 | "id": "0b223ee2-0baa-4b80-a06f-04e7dfcb68b7", | 110 | "id": "0b223ee2-0baa-4b80-a06f-04e7dfcb68b7", | ||
70 | "name": "3D data", | 111 | "name": "3D data", | ||
71 | "state": "active", | 112 | "state": "active", | ||
72 | "vocabulary_id": null | 113 | "vocabulary_id": null | ||
73 | }, | 114 | }, | ||
74 | { | 115 | { | ||
75 | "display_name": "LiDAR", | 116 | "display_name": "LiDAR", | ||
76 | "id": "d3e5e683-df2e-4a64-84a0-93185f5f806e", | 117 | "id": "d3e5e683-df2e-4a64-84a0-93185f5f806e", | ||
77 | "name": "LiDAR", | 118 | "name": "LiDAR", | ||
78 | "state": "active", | 119 | "state": "active", | ||
79 | "vocabulary_id": null | 120 | "vocabulary_id": null | ||
80 | }, | 121 | }, | ||
81 | { | 122 | { | ||
82 | "display_name": "anomaly detection", | 123 | "display_name": "anomaly detection", | ||
83 | "id": "0b971f39-5ef1-4478-a9bd-e9250e956e2d", | 124 | "id": "0b971f39-5ef1-4478-a9bd-e9250e956e2d", | ||
84 | "name": "anomaly detection", | 125 | "name": "anomaly detection", | ||
85 | "state": "active", | 126 | "state": "active", | ||
86 | "vocabulary_id": null | 127 | "vocabulary_id": null | ||
87 | }, | 128 | }, | ||
88 | { | 129 | { | ||
89 | "display_name": "depth camera", | 130 | "display_name": "depth camera", | ||
90 | "id": "c3a8f2c8-4f1e-4fcc-84d8-c20f6941fe6d", | 131 | "id": "c3a8f2c8-4f1e-4fcc-84d8-c20f6941fe6d", | ||
91 | "name": "depth camera", | 132 | "name": "depth camera", | ||
92 | "state": "active", | 133 | "state": "active", | ||
93 | "vocabulary_id": null | 134 | "vocabulary_id": null | ||
94 | }, | 135 | }, | ||
95 | { | 136 | { | ||
96 | "display_name": "point cloud video", | 137 | "display_name": "point cloud video", | ||
97 | "id": "7e6cf9c9-0291-44cb-a488-694e3bdfc761", | 138 | "id": "7e6cf9c9-0291-44cb-a488-694e3bdfc761", | ||
98 | "name": "point cloud video", | 139 | "name": "point cloud video", | ||
99 | "state": "active", | 140 | "state": "active", | ||
100 | "vocabulary_id": null | 141 | "vocabulary_id": null | ||
101 | } | 142 | } | ||
102 | ], | 143 | ], | ||
103 | "title": "Point Cloud Video Anomaly Detection Based on Point | 144 | "title": "Point Cloud Video Anomaly Detection Based on Point | ||
104 | Spatio-Temporal Auto-Encoder", | 145 | Spatio-Temporal Auto-Encoder", | ||
105 | "type": "dataset", | 146 | "type": "dataset", | ||
106 | "version": "" | 147 | "version": "" | ||
107 | } | 148 | } |