Changes
On December 3, 2024 at 9:52:49 AM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Graph Neural Networks Including SparSe inTerpretability (GISST) -
Changed value of field
doi_date_published
to2024-12-03
in Graph Neural Networks Including SparSe inTerpretability (GISST) -
Added resource Original Metadata to Graph Neural Networks Including SparSe inTerpretability (GISST)
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Chris Lin", | 3 | "author": "Chris Lin", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "", | 7 | "defined_in": "", | ||
8 | "doi": "10.57702/4nz3lndm", | 8 | "doi": "10.57702/4nz3lndm", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-03", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Gerald J. Sun", | 15 | "extra_author": "Gerald J. Sun", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Krishna C. Bulusu", | 19 | "extra_author": "Krishna C. Bulusu", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Jonathan R. Dry", | 23 | "extra_author": "Jonathan R. Dry", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Marylens Hernandez", | 27 | "extra_author": "Marylens Hernandez", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | } | 29 | } | ||
30 | ], | 30 | ], | ||
31 | "groups": [ | 31 | "groups": [ | ||
32 | { | 32 | { | ||
33 | "description": "", | 33 | "description": "", | ||
34 | "display_name": "Graph Neural Networks", | 34 | "display_name": "Graph Neural Networks", | ||
35 | "id": "eebd8b57-9537-49ea-a9af-acefc8889bb4", | 35 | "id": "eebd8b57-9537-49ea-a9af-acefc8889bb4", | ||
36 | "image_display_url": "", | 36 | "image_display_url": "", | ||
37 | "name": "graph-neural-networks", | 37 | "name": "graph-neural-networks", | ||
38 | "title": "Graph Neural Networks" | 38 | "title": "Graph Neural Networks" | ||
39 | }, | 39 | }, | ||
40 | { | 40 | { | ||
41 | "description": "", | 41 | "description": "", | ||
42 | "display_name": "Interpretability", | 42 | "display_name": "Interpretability", | ||
43 | "id": "4b39028f-d2bf-46cc-b45b-708bab81f9c0", | 43 | "id": "4b39028f-d2bf-46cc-b45b-708bab81f9c0", | ||
44 | "image_display_url": "", | 44 | "image_display_url": "", | ||
45 | "name": "interpretability", | 45 | "name": "interpretability", | ||
46 | "title": "Interpretability" | 46 | "title": "Interpretability" | ||
47 | } | 47 | } | ||
48 | ], | 48 | ], | ||
49 | "id": "278f33e1-8a03-440e-a5c6-59cc71ea9fe4", | 49 | "id": "278f33e1-8a03-440e-a5c6-59cc71ea9fe4", | ||
50 | "isopen": false, | 50 | "isopen": false, | ||
51 | "landing_page": "", | 51 | "landing_page": "", | ||
52 | "license_title": null, | 52 | "license_title": null, | ||
53 | "link_orkg": "", | 53 | "link_orkg": "", | ||
54 | "metadata_created": "2024-12-03T09:52:47.941918", | 54 | "metadata_created": "2024-12-03T09:52:47.941918", | ||
n | 55 | "metadata_modified": "2024-12-03T09:52:47.941924", | n | 55 | "metadata_modified": "2024-12-03T09:52:48.387534", |
56 | "name": | 56 | "name": | ||
57 | "graph-neural-networks-including-sparse-interpretability--gisst-", | 57 | "graph-neural-networks-including-sparse-interpretability--gisst-", | ||
58 | "notes": "Graph Neural Networks (GNNs) are versatile, powerful | 58 | "notes": "Graph Neural Networks (GNNs) are versatile, powerful | ||
59 | machine learning methods that enable graph structure and feature | 59 | machine learning methods that enable graph structure and feature | ||
60 | representation learning, and have applications across many domains. | 60 | representation learning, and have applications across many domains. | ||
61 | For applications critically requiring interpretation, attention-based | 61 | For applications critically requiring interpretation, attention-based | ||
62 | GNNs have been leveraged. However, these approaches either rely on | 62 | GNNs have been leveraged. However, these approaches either rely on | ||
63 | specific model architectures or lack a joint consideration of graph | 63 | specific model architectures or lack a joint consideration of graph | ||
64 | structure and node features in their interpretation. Here we present a | 64 | structure and node features in their interpretation. Here we present a | ||
65 | model-agnostic framework for interpreting important graph structure | 65 | model-agnostic framework for interpreting important graph structure | ||
66 | and node features, Graph neural networks Including SparSe | 66 | and node features, Graph neural networks Including SparSe | ||
67 | inTerpretability (GISST). With any GNN model, GISST combines an | 67 | inTerpretability (GISST). With any GNN model, GISST combines an | ||
68 | attention mechanism and sparsity regularization to yield an important | 68 | attention mechanism and sparsity regularization to yield an important | ||
69 | subgraph and node feature subset related to any graph-based task.", | 69 | subgraph and node feature subset related to any graph-based task.", | ||
n | 70 | "num_resources": 0, | n | 70 | "num_resources": 1, |
71 | "num_tags": 4, | 71 | "num_tags": 4, | ||
72 | "organization": { | 72 | "organization": { | ||
73 | "approval_status": "approved", | 73 | "approval_status": "approved", | ||
74 | "created": "2024-11-25T12:11:38.292601", | 74 | "created": "2024-11-25T12:11:38.292601", | ||
75 | "description": "", | 75 | "description": "", | ||
76 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 76 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
77 | "image_url": "", | 77 | "image_url": "", | ||
78 | "is_organization": true, | 78 | "is_organization": true, | ||
79 | "name": "no-organization", | 79 | "name": "no-organization", | ||
80 | "state": "active", | 80 | "state": "active", | ||
81 | "title": "No Organization", | 81 | "title": "No Organization", | ||
82 | "type": "organization" | 82 | "type": "organization" | ||
83 | }, | 83 | }, | ||
84 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 84 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
85 | "private": false, | 85 | "private": false, | ||
86 | "relationships_as_object": [], | 86 | "relationships_as_object": [], | ||
87 | "relationships_as_subject": [], | 87 | "relationships_as_subject": [], | ||
t | 88 | "resources": [], | t | 88 | "resources": [ |
89 | { | ||||
90 | "cache_last_updated": null, | ||||
91 | "cache_url": null, | ||||
92 | "created": "2024-12-03T10:49:30", | ||||
93 | "data": [ | ||||
94 | "dcterms:title", | ||||
95 | "dcterms:accessRights", | ||||
96 | "dcterms:creator", | ||||
97 | "dcterms:description", | ||||
98 | "dcterms:issued", | ||||
99 | "dcterms:language", | ||||
100 | "dcterms:identifier", | ||||
101 | "dcat:theme", | ||||
102 | "dcterms:type", | ||||
103 | "dcat:keyword", | ||||
104 | "dcat:landingPage", | ||||
105 | "dcterms:hasVersion", | ||||
106 | "dcterms:format", | ||||
107 | "mls:task" | ||||
108 | ], | ||||
109 | "description": "The json representation of the dataset with its | ||||
110 | distributions based on DCAT.", | ||||
111 | "format": "JSON", | ||||
112 | "hash": "", | ||||
113 | "id": "f9e4888f-3e00-47f3-b18b-cd109df095ca", | ||||
114 | "last_modified": "2024-12-03T09:52:48.379999", | ||||
115 | "metadata_modified": "2024-12-03T09:52:48.390313", | ||||
116 | "mimetype": "application/json", | ||||
117 | "mimetype_inner": null, | ||||
118 | "name": "Original Metadata", | ||||
119 | "package_id": "278f33e1-8a03-440e-a5c6-59cc71ea9fe4", | ||||
120 | "position": 0, | ||||
121 | "resource_type": null, | ||||
122 | "size": 1484, | ||||
123 | "state": "active", | ||||
124 | "url": | ||||
125 | resource/f9e4888f-3e00-47f3-b18b-cd109df095ca/download/metadata.json", | ||||
126 | "url_type": "upload" | ||||
127 | } | ||||
128 | ], | ||||
89 | "services_used_list": "", | 129 | "services_used_list": "", | ||
90 | "state": "active", | 130 | "state": "active", | ||
91 | "tags": [ | 131 | "tags": [ | ||
92 | { | 132 | { | ||
93 | "display_name": "Attention Mechanism", | 133 | "display_name": "Attention Mechanism", | ||
94 | "id": "0e72df90-6f90-4068-b370-0ec0bb0170f7", | 134 | "id": "0e72df90-6f90-4068-b370-0ec0bb0170f7", | ||
95 | "name": "Attention Mechanism", | 135 | "name": "Attention Mechanism", | ||
96 | "state": "active", | 136 | "state": "active", | ||
97 | "vocabulary_id": null | 137 | "vocabulary_id": null | ||
98 | }, | 138 | }, | ||
99 | { | 139 | { | ||
100 | "display_name": "Graph Neural Networks", | 140 | "display_name": "Graph Neural Networks", | ||
101 | "id": "8c619694-1a66-4a7d-bcda-bb2d6265d082", | 141 | "id": "8c619694-1a66-4a7d-bcda-bb2d6265d082", | ||
102 | "name": "Graph Neural Networks", | 142 | "name": "Graph Neural Networks", | ||
103 | "state": "active", | 143 | "state": "active", | ||
104 | "vocabulary_id": null | 144 | "vocabulary_id": null | ||
105 | }, | 145 | }, | ||
106 | { | 146 | { | ||
107 | "display_name": "Interpretability", | 147 | "display_name": "Interpretability", | ||
108 | "id": "7b0ef563-8fe8-47c6-8b53-25700094382a", | 148 | "id": "7b0ef563-8fe8-47c6-8b53-25700094382a", | ||
109 | "name": "Interpretability", | 149 | "name": "Interpretability", | ||
110 | "state": "active", | 150 | "state": "active", | ||
111 | "vocabulary_id": null | 151 | "vocabulary_id": null | ||
112 | }, | 152 | }, | ||
113 | { | 153 | { | ||
114 | "display_name": "Sparsity Regularization", | 154 | "display_name": "Sparsity Regularization", | ||
115 | "id": "bc55e823-533f-409a-b6fc-14080883a6a8", | 155 | "id": "bc55e823-533f-409a-b6fc-14080883a6a8", | ||
116 | "name": "Sparsity Regularization", | 156 | "name": "Sparsity Regularization", | ||
117 | "state": "active", | 157 | "state": "active", | ||
118 | "vocabulary_id": null | 158 | "vocabulary_id": null | ||
119 | } | 159 | } | ||
120 | ], | 160 | ], | ||
121 | "title": "Graph Neural Networks Including SparSe inTerpretability | 161 | "title": "Graph Neural Networks Including SparSe inTerpretability | ||
122 | (GISST)", | 162 | (GISST)", | ||
123 | "type": "dataset", | 163 | "type": "dataset", | ||
124 | "version": "" | 164 | "version": "" | ||
125 | } | 165 | } |