Changes
On December 16, 2024 at 8:17:55 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in ATR dataset -
Changed value of field
doi_date_published
to2024-12-16
in ATR dataset -
Added resource Original Metadata to ATR dataset
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Jianshu Li", | 3 | "author": "Jianshu Li", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [ | 5 | "citation": [ | ||
6 | "https://doi.org/10.48550/arXiv.1904.04536" | 6 | "https://doi.org/10.48550/arXiv.1904.04536" | ||
7 | ], | 7 | ], | ||
8 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 8 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
9 | "defined_in": "https://doi.org/10.48550/arXiv.1705.07206", | 9 | "defined_in": "https://doi.org/10.48550/arXiv.1705.07206", | ||
10 | "doi": "10.57702/tj3t36k5", | 10 | "doi": "10.57702/tj3t36k5", | ||
n | 11 | "doi_date_published": null, | n | 11 | "doi_date_published": "2024-12-16", |
12 | "doi_publisher": "TIB", | 12 | "doi_publisher": "TIB", | ||
n | 13 | "doi_status": false, | n | 13 | "doi_status": true, |
14 | "domain": "https://service.tib.eu/ldmservice", | 14 | "domain": "https://service.tib.eu/ldmservice", | ||
15 | "extra_authors": [ | 15 | "extra_authors": [ | ||
16 | { | 16 | { | ||
17 | "extra_author": "Yidong Li", | 17 | "extra_author": "Yidong Li", | ||
18 | "orcid": "" | 18 | "orcid": "" | ||
19 | }, | 19 | }, | ||
20 | { | 20 | { | ||
21 | "extra_author": "Jian Zhao", | 21 | "extra_author": "Jian Zhao", | ||
22 | "orcid": "" | 22 | "orcid": "" | ||
23 | }, | 23 | }, | ||
24 | { | 24 | { | ||
25 | "extra_author": "Yunchao Wei", | 25 | "extra_author": "Yunchao Wei", | ||
26 | "orcid": "" | 26 | "orcid": "" | ||
27 | }, | 27 | }, | ||
28 | { | 28 | { | ||
29 | "extra_author": "Congyan Lang", | 29 | "extra_author": "Congyan Lang", | ||
30 | "orcid": "" | 30 | "orcid": "" | ||
31 | }, | 31 | }, | ||
32 | { | 32 | { | ||
33 | "extra_author": "Jiashi Feng", | 33 | "extra_author": "Jiashi Feng", | ||
34 | "orcid": "" | 34 | "orcid": "" | ||
35 | }, | 35 | }, | ||
36 | { | 36 | { | ||
37 | "extra_author": "Shuicheng Yan", | 37 | "extra_author": "Shuicheng Yan", | ||
38 | "orcid": "" | 38 | "orcid": "" | ||
39 | }, | 39 | }, | ||
40 | { | 40 | { | ||
41 | "extra_author": "Terence Sim", | 41 | "extra_author": "Terence Sim", | ||
42 | "orcid": "" | 42 | "orcid": "" | ||
43 | } | 43 | } | ||
44 | ], | 44 | ], | ||
45 | "groups": [ | 45 | "groups": [ | ||
46 | { | 46 | { | ||
47 | "description": "", | 47 | "description": "", | ||
48 | "display_name": "Human Parsing", | 48 | "display_name": "Human Parsing", | ||
49 | "id": "51ac0b94-fd19-4fe9-b9d4-77d5aa155a89", | 49 | "id": "51ac0b94-fd19-4fe9-b9d4-77d5aa155a89", | ||
50 | "image_display_url": "", | 50 | "image_display_url": "", | ||
51 | "name": "human-parsing", | 51 | "name": "human-parsing", | ||
52 | "title": "Human Parsing" | 52 | "title": "Human Parsing" | ||
53 | } | 53 | } | ||
54 | ], | 54 | ], | ||
55 | "id": "d59ca01b-0e48-4efd-93c8-5940af534958", | 55 | "id": "d59ca01b-0e48-4efd-93c8-5940af534958", | ||
56 | "isopen": false, | 56 | "isopen": false, | ||
57 | "landing_page": "https://ai.stanford.edu/~jgao/papers/ATR.pdf", | 57 | "landing_page": "https://ai.stanford.edu/~jgao/papers/ATR.pdf", | ||
58 | "license_title": null, | 58 | "license_title": null, | ||
59 | "link_orkg": "", | 59 | "link_orkg": "", | ||
60 | "metadata_created": "2024-12-16T20:17:53.685875", | 60 | "metadata_created": "2024-12-16T20:17:53.685875", | ||
n | 61 | "metadata_modified": "2024-12-16T20:17:53.685893", | n | 61 | "metadata_modified": "2024-12-16T20:17:54.069382", |
62 | "name": "atr-dataset", | 62 | "name": "atr-dataset", | ||
63 | "notes": "Human parsing has recently attracted a huge amount of | 63 | "notes": "Human parsing has recently attracted a huge amount of | ||
64 | interests and achieved great progress with the advance of deep | 64 | interests and achieved great progress with the advance of deep | ||
65 | convolutional neural networks and large-scale datasets. Most of the | 65 | convolutional neural networks and large-scale datasets. Most of the | ||
66 | prior works focus on developing new structures and auxiliary | 66 | prior works focus on developing new structures and auxiliary | ||
67 | information guidance to improve general feature representation, such | 67 | information guidance to improve general feature representation, such | ||
68 | as dilated convolution, LSTM structure, encoder-decoder architecture, | 68 | as dilated convolution, LSTM structure, encoder-decoder architecture, | ||
69 | and human pose constraints. Although these methods show promising | 69 | and human pose constraints. Although these methods show promising | ||
70 | results on each human parsing dataset, they directly use one flat | 70 | results on each human parsing dataset, they directly use one flat | ||
71 | prediction layer to classify all labels, which disregards the | 71 | prediction layer to classify all labels, which disregards the | ||
72 | intrinsic semantic correlations across concepts and utilize the | 72 | intrinsic semantic correlations across concepts and utilize the | ||
73 | annotations in an inefficient way.", | 73 | annotations in an inefficient way.", | ||
n | 74 | "num_resources": 0, | n | 74 | "num_resources": 1, |
75 | "num_tags": 5, | 75 | "num_tags": 5, | ||
76 | "organization": { | 76 | "organization": { | ||
77 | "approval_status": "approved", | 77 | "approval_status": "approved", | ||
78 | "created": "2024-11-25T12:11:38.292601", | 78 | "created": "2024-11-25T12:11:38.292601", | ||
79 | "description": "", | 79 | "description": "", | ||
80 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 80 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
81 | "image_url": "", | 81 | "image_url": "", | ||
82 | "is_organization": true, | 82 | "is_organization": true, | ||
83 | "name": "no-organization", | 83 | "name": "no-organization", | ||
84 | "state": "active", | 84 | "state": "active", | ||
85 | "title": "No Organization", | 85 | "title": "No Organization", | ||
86 | "type": "organization" | 86 | "type": "organization" | ||
87 | }, | 87 | }, | ||
88 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 88 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
89 | "private": false, | 89 | "private": false, | ||
90 | "relationships_as_object": [], | 90 | "relationships_as_object": [], | ||
91 | "relationships_as_subject": [], | 91 | "relationships_as_subject": [], | ||
t | 92 | "resources": [], | t | 92 | "resources": [ |
93 | { | ||||
94 | "cache_last_updated": null, | ||||
95 | "cache_url": null, | ||||
96 | "created": "2024-12-16T18:25:45", | ||||
97 | "data": [ | ||||
98 | "dcterms:title", | ||||
99 | "dcterms:accessRights", | ||||
100 | "dcterms:creator", | ||||
101 | "dcterms:description", | ||||
102 | "dcterms:issued", | ||||
103 | "dcterms:language", | ||||
104 | "dcterms:identifier", | ||||
105 | "dcat:theme", | ||||
106 | "dcterms:type", | ||||
107 | "dcat:keyword", | ||||
108 | "dcat:landingPage", | ||||
109 | "dcterms:hasVersion", | ||||
110 | "dcterms:format", | ||||
111 | "mls:task", | ||||
112 | "datacite:isDescribedBy" | ||||
113 | ], | ||||
114 | "description": "The json representation of the dataset with its | ||||
115 | distributions based on DCAT.", | ||||
116 | "format": "JSON", | ||||
117 | "hash": "", | ||||
118 | "id": "968f275b-642d-40a4-92ea-f6cb70ed5386", | ||||
119 | "last_modified": "2024-12-16T20:17:54.061571", | ||||
120 | "metadata_modified": "2024-12-16T20:17:54.072238", | ||||
121 | "mimetype": "application/json", | ||||
122 | "mimetype_inner": null, | ||||
123 | "name": "Original Metadata", | ||||
124 | "package_id": "d59ca01b-0e48-4efd-93c8-5940af534958", | ||||
125 | "position": 0, | ||||
126 | "resource_type": null, | ||||
127 | "size": 1441, | ||||
128 | "state": "active", | ||||
129 | "url": | ||||
130 | resource/968f275b-642d-40a4-92ea-f6cb70ed5386/download/metadata.json", | ||||
131 | "url_type": "upload" | ||||
132 | } | ||||
133 | ], | ||||
93 | "services_used_list": "", | 134 | "services_used_list": "", | ||
94 | "state": "active", | 135 | "state": "active", | ||
95 | "tags": [ | 136 | "tags": [ | ||
96 | { | 137 | { | ||
97 | "display_name": "18 labels", | 138 | "display_name": "18 labels", | ||
98 | "id": "00969e62-65bf-4e50-abe1-20790365231b", | 139 | "id": "00969e62-65bf-4e50-abe1-20790365231b", | ||
99 | "name": "18 labels", | 140 | "name": "18 labels", | ||
100 | "state": "active", | 141 | "state": "active", | ||
101 | "vocabulary_id": null | 142 | "vocabulary_id": null | ||
102 | }, | 143 | }, | ||
103 | { | 144 | { | ||
104 | "display_name": "human parsing", | 145 | "display_name": "human parsing", | ||
105 | "id": "c06febf1-a3de-455d-8c12-ba6235f2b78b", | 146 | "id": "c06febf1-a3de-455d-8c12-ba6235f2b78b", | ||
106 | "name": "human parsing", | 147 | "name": "human parsing", | ||
107 | "state": "active", | 148 | "state": "active", | ||
108 | "vocabulary_id": null | 149 | "vocabulary_id": null | ||
109 | }, | 150 | }, | ||
110 | { | 151 | { | ||
111 | "display_name": "semantic segmentation", | 152 | "display_name": "semantic segmentation", | ||
112 | "id": "f9237911-e9df-4dd5-a9aa-301b6d4969af", | 153 | "id": "f9237911-e9df-4dd5-a9aa-301b6d4969af", | ||
113 | "name": "semantic segmentation", | 154 | "name": "semantic segmentation", | ||
114 | "state": "active", | 155 | "state": "active", | ||
115 | "vocabulary_id": null | 156 | "vocabulary_id": null | ||
116 | }, | 157 | }, | ||
117 | { | 158 | { | ||
118 | "display_name": "single persons", | 159 | "display_name": "single persons", | ||
119 | "id": "a24ffc83-2293-46ad-b94e-f55c430bfd1b", | 160 | "id": "a24ffc83-2293-46ad-b94e-f55c430bfd1b", | ||
120 | "name": "single persons", | 161 | "name": "single persons", | ||
121 | "state": "active", | 162 | "state": "active", | ||
122 | "vocabulary_id": null | 163 | "vocabulary_id": null | ||
123 | }, | 164 | }, | ||
124 | { | 165 | { | ||
125 | "display_name": "upright position", | 166 | "display_name": "upright position", | ||
126 | "id": "52682ef3-5819-4691-96f0-aa43c20de211", | 167 | "id": "52682ef3-5819-4691-96f0-aa43c20de211", | ||
127 | "name": "upright position", | 168 | "name": "upright position", | ||
128 | "state": "active", | 169 | "state": "active", | ||
129 | "vocabulary_id": null | 170 | "vocabulary_id": null | ||
130 | } | 171 | } | ||
131 | ], | 172 | ], | ||
132 | "title": "ATR dataset", | 173 | "title": "ATR dataset", | ||
133 | "type": "dataset", | 174 | "type": "dataset", | ||
134 | "version": "" | 175 | "version": "" | ||
135 | } | 176 | } |