Changes
On December 2, 2024 at 10:38:31 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in SC-VAE: Sparse Coding-based Variational Autoencoder with Learned ISTA -
Changed value of field
doi_date_published
to2024-12-02
in SC-VAE: Sparse Coding-based Variational Autoencoder with Learned ISTA -
Added resource Original Metadata to SC-VAE: Sparse Coding-based Variational Autoencoder with Learned ISTA
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Pan Xiao", | 3 | "author": "Pan Xiao", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2303.16666", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2303.16666", | ||
8 | "doi": "10.57702/mt5x44tf", | 8 | "doi": "10.57702/mt5x44tf", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-02", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Peijie Qiu", | 15 | "extra_author": "Peijie Qiu", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Sungmin Ha", | 19 | "extra_author": "Sungmin Ha", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Abdalla Bani", | 23 | "extra_author": "Abdalla Bani", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Shuang Zhou", | 27 | "extra_author": "Shuang Zhou", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | }, | 29 | }, | ||
30 | { | 30 | { | ||
31 | "extra_author": "Aristeidis Sotiras", | 31 | "extra_author": "Aristeidis Sotiras", | ||
32 | "orcid": "" | 32 | "orcid": "" | ||
33 | } | 33 | } | ||
34 | ], | 34 | ], | ||
35 | "groups": [ | 35 | "groups": [ | ||
36 | { | 36 | { | ||
37 | "description": "", | 37 | "description": "", | ||
38 | "display_name": "Image Generation", | 38 | "display_name": "Image Generation", | ||
39 | "id": "be25a76c-def1-4e73-8b1c-b81222d63867", | 39 | "id": "be25a76c-def1-4e73-8b1c-b81222d63867", | ||
40 | "image_display_url": "", | 40 | "image_display_url": "", | ||
41 | "name": "image-generation", | 41 | "name": "image-generation", | ||
42 | "title": "Image Generation" | 42 | "title": "Image Generation" | ||
43 | }, | 43 | }, | ||
44 | { | 44 | { | ||
45 | "description": "", | 45 | "description": "", | ||
46 | "display_name": "Image Reconstruction", | 46 | "display_name": "Image Reconstruction", | ||
47 | "id": "a5660c19-3526-4e91-a26d-cf3cd40fe985", | 47 | "id": "a5660c19-3526-4e91-a26d-cf3cd40fe985", | ||
48 | "image_display_url": "", | 48 | "image_display_url": "", | ||
49 | "name": "image-reconstruction", | 49 | "name": "image-reconstruction", | ||
50 | "title": "Image Reconstruction" | 50 | "title": "Image Reconstruction" | ||
51 | }, | 51 | }, | ||
52 | { | 52 | { | ||
53 | "description": "", | 53 | "description": "", | ||
54 | "display_name": "Unsupervised Image Segmentation", | 54 | "display_name": "Unsupervised Image Segmentation", | ||
55 | "id": "4ae09547-6844-484e-a164-45859b662326", | 55 | "id": "4ae09547-6844-484e-a164-45859b662326", | ||
56 | "image_display_url": "", | 56 | "image_display_url": "", | ||
57 | "name": "unsupervised-image-segmentation", | 57 | "name": "unsupervised-image-segmentation", | ||
58 | "title": "Unsupervised Image Segmentation" | 58 | "title": "Unsupervised Image Segmentation" | ||
59 | } | 59 | } | ||
60 | ], | 60 | ], | ||
61 | "id": "d56d002b-4ef1-48af-ae4d-8cfa0672196c", | 61 | "id": "d56d002b-4ef1-48af-ae4d-8cfa0672196c", | ||
62 | "isopen": false, | 62 | "isopen": false, | ||
63 | "landing_page": "https://arxiv.org/abs/2203.15758", | 63 | "landing_page": "https://arxiv.org/abs/2203.15758", | ||
64 | "license_title": null, | 64 | "license_title": null, | ||
65 | "link_orkg": "", | 65 | "link_orkg": "", | ||
66 | "metadata_created": "2024-12-02T22:38:30.062532", | 66 | "metadata_created": "2024-12-02T22:38:30.062532", | ||
n | 67 | "metadata_modified": "2024-12-02T22:38:30.062537", | n | 67 | "metadata_modified": "2024-12-02T22:38:30.677895", |
68 | "name": | 68 | "name": | ||
69 | c-vae--sparse-coding-based-variational-autoencoder-with-learned-ista", | 69 | c-vae--sparse-coding-based-variational-autoencoder-with-learned-ista", | ||
70 | "notes": "Learning rich data representations from unlabeled data is | 70 | "notes": "Learning rich data representations from unlabeled data is | ||
71 | a key challenge towards applying deep learning algorithms in | 71 | a key challenge towards applying deep learning algorithms in | ||
72 | downstream tasks. The proposed method learns sparse data | 72 | downstream tasks. The proposed method learns sparse data | ||
73 | representations that consist of a linear combination of a small number | 73 | representations that consist of a linear combination of a small number | ||
74 | of predetermined orthogonal atoms.", | 74 | of predetermined orthogonal atoms.", | ||
n | 75 | "num_resources": 0, | n | 75 | "num_resources": 1, |
76 | "num_tags": 5, | 76 | "num_tags": 5, | ||
77 | "organization": { | 77 | "organization": { | ||
78 | "approval_status": "approved", | 78 | "approval_status": "approved", | ||
79 | "created": "2024-11-25T12:11:38.292601", | 79 | "created": "2024-11-25T12:11:38.292601", | ||
80 | "description": "", | 80 | "description": "", | ||
81 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 81 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
82 | "image_url": "", | 82 | "image_url": "", | ||
83 | "is_organization": true, | 83 | "is_organization": true, | ||
84 | "name": "no-organization", | 84 | "name": "no-organization", | ||
85 | "state": "active", | 85 | "state": "active", | ||
86 | "title": "No Organization", | 86 | "title": "No Organization", | ||
87 | "type": "organization" | 87 | "type": "organization" | ||
88 | }, | 88 | }, | ||
89 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 89 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
90 | "private": false, | 90 | "private": false, | ||
91 | "relationships_as_object": [], | 91 | "relationships_as_object": [], | ||
92 | "relationships_as_subject": [], | 92 | "relationships_as_subject": [], | ||
t | 93 | "resources": [], | t | 93 | "resources": [ |
94 | { | ||||
95 | "cache_last_updated": null, | ||||
96 | "cache_url": null, | ||||
97 | "created": "2024-12-02T22:29:38", | ||||
98 | "data": [ | ||||
99 | "dcterms:title", | ||||
100 | "dcterms:accessRights", | ||||
101 | "dcterms:creator", | ||||
102 | "dcterms:description", | ||||
103 | "dcterms:issued", | ||||
104 | "dcterms:language", | ||||
105 | "dcterms:identifier", | ||||
106 | "dcat:theme", | ||||
107 | "dcterms:type", | ||||
108 | "dcat:keyword", | ||||
109 | "dcat:landingPage", | ||||
110 | "dcterms:hasVersion", | ||||
111 | "dcterms:format", | ||||
112 | "mls:task", | ||||
113 | "datacite:isDescribedBy" | ||||
114 | ], | ||||
115 | "description": "The json representation of the dataset with its | ||||
116 | distributions based on DCAT.", | ||||
117 | "format": "JSON", | ||||
118 | "hash": "", | ||||
119 | "id": "0e79503e-068b-477f-981e-72969fb7b8dc", | ||||
120 | "last_modified": "2024-12-02T22:38:30.670241", | ||||
121 | "metadata_modified": "2024-12-02T22:38:30.680727", | ||||
122 | "mimetype": "application/json", | ||||
123 | "mimetype_inner": null, | ||||
124 | "name": "Original Metadata", | ||||
125 | "package_id": "d56d002b-4ef1-48af-ae4d-8cfa0672196c", | ||||
126 | "position": 0, | ||||
127 | "resource_type": null, | ||||
128 | "size": 1146, | ||||
129 | "state": "active", | ||||
130 | "url": | ||||
131 | resource/0e79503e-068b-477f-981e-72969fb7b8dc/download/metadata.json", | ||||
132 | "url_type": "upload" | ||||
133 | } | ||||
134 | ], | ||||
94 | "services_used_list": "", | 135 | "services_used_list": "", | ||
95 | "state": "active", | 136 | "state": "active", | ||
96 | "tags": [ | 137 | "tags": [ | ||
97 | { | 138 | { | ||
98 | "display_name": "Image Generation", | 139 | "display_name": "Image Generation", | ||
99 | "id": "a0db1a78-8e9a-494f-8d75-462dc3a45472", | 140 | "id": "a0db1a78-8e9a-494f-8d75-462dc3a45472", | ||
100 | "name": "Image Generation", | 141 | "name": "Image Generation", | ||
101 | "state": "active", | 142 | "state": "active", | ||
102 | "vocabulary_id": null | 143 | "vocabulary_id": null | ||
103 | }, | 144 | }, | ||
104 | { | 145 | { | ||
105 | "display_name": "Image Reconstruction", | 146 | "display_name": "Image Reconstruction", | ||
106 | "id": "58a95e75-15cc-4634-ba1c-d89302691ee4", | 147 | "id": "58a95e75-15cc-4634-ba1c-d89302691ee4", | ||
107 | "name": "Image Reconstruction", | 148 | "name": "Image Reconstruction", | ||
108 | "state": "active", | 149 | "state": "active", | ||
109 | "vocabulary_id": null | 150 | "vocabulary_id": null | ||
110 | }, | 151 | }, | ||
111 | { | 152 | { | ||
112 | "display_name": "Sparse Coding", | 153 | "display_name": "Sparse Coding", | ||
113 | "id": "85b172b9-7567-4282-935c-7f4378067f59", | 154 | "id": "85b172b9-7567-4282-935c-7f4378067f59", | ||
114 | "name": "Sparse Coding", | 155 | "name": "Sparse Coding", | ||
115 | "state": "active", | 156 | "state": "active", | ||
116 | "vocabulary_id": null | 157 | "vocabulary_id": null | ||
117 | }, | 158 | }, | ||
118 | { | 159 | { | ||
119 | "display_name": "Unsupervised Image Segmentation", | 160 | "display_name": "Unsupervised Image Segmentation", | ||
120 | "id": "4c774bf5-7552-416e-b367-84339f276fb1", | 161 | "id": "4c774bf5-7552-416e-b367-84339f276fb1", | ||
121 | "name": "Unsupervised Image Segmentation", | 162 | "name": "Unsupervised Image Segmentation", | ||
122 | "state": "active", | 163 | "state": "active", | ||
123 | "vocabulary_id": null | 164 | "vocabulary_id": null | ||
124 | }, | 165 | }, | ||
125 | { | 166 | { | ||
126 | "display_name": "Variational Autoencoder", | 167 | "display_name": "Variational Autoencoder", | ||
127 | "id": "c3c81488-e3a1-4f02-bbb8-eb1fbcc2663a", | 168 | "id": "c3c81488-e3a1-4f02-bbb8-eb1fbcc2663a", | ||
128 | "name": "Variational Autoencoder", | 169 | "name": "Variational Autoencoder", | ||
129 | "state": "active", | 170 | "state": "active", | ||
130 | "vocabulary_id": null | 171 | "vocabulary_id": null | ||
131 | } | 172 | } | ||
132 | ], | 173 | ], | ||
133 | "title": "SC-VAE: Sparse Coding-based Variational Autoencoder with | 174 | "title": "SC-VAE: Sparse Coding-based Variational Autoencoder with | ||
134 | Learned ISTA", | 175 | Learned ISTA", | ||
135 | "type": "dataset", | 176 | "type": "dataset", | ||
136 | "version": "" | 177 | "version": "" | ||
137 | } | 178 | } |