Changes
On January 3, 2025 at 1:08:03 AM UTC, admin:
-
Changed value of field
doi_date_published
to2025-01-03
in CausalFairML via RPID -
Changed value of field
doi_status
toTrue
in CausalFairML via RPID -
Added resource Original Metadata to CausalFairML via RPID
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Ludwig Bothmann", | 3 | "author": "Ludwig Bothmann", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2307.12797", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2307.12797", | ||
8 | "doi": "10.57702/nkwmzleo", | 8 | "doi": "10.57702/nkwmzleo", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2025-01-03", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Susanne Dandl", | 15 | "extra_author": "Susanne Dandl", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Michael Schomaker", | 19 | "extra_author": "Michael Schomaker", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | } | 21 | } | ||
22 | ], | 22 | ], | ||
23 | "groups": [ | 23 | "groups": [ | ||
24 | { | 24 | { | ||
25 | "description": "", | 25 | "description": "", | ||
26 | "display_name": "Fairness in machine learning", | 26 | "display_name": "Fairness in machine learning", | ||
27 | "id": "acd9ab59-b298-49cd-8e2b-8de7d366522b", | 27 | "id": "acd9ab59-b298-49cd-8e2b-8de7d366522b", | ||
28 | "image_display_url": "", | 28 | "image_display_url": "", | ||
29 | "name": "fairness-in-machine-learning", | 29 | "name": "fairness-in-machine-learning", | ||
30 | "title": "Fairness in machine learning" | 30 | "title": "Fairness in machine learning" | ||
31 | } | 31 | } | ||
32 | ], | 32 | ], | ||
33 | "id": "6d0b3450-7ca4-4b7c-bb15-5fc60aecb162", | 33 | "id": "6d0b3450-7ca4-4b7c-bb15-5fc60aecb162", | ||
34 | "isopen": false, | 34 | "isopen": false, | ||
35 | "landing_page": "", | 35 | "landing_page": "", | ||
36 | "license_title": null, | 36 | "license_title": null, | ||
37 | "link_orkg": "", | 37 | "link_orkg": "", | ||
38 | "metadata_created": "2025-01-03T01:08:01.482913", | 38 | "metadata_created": "2025-01-03T01:08:01.482913", | ||
n | 39 | "metadata_modified": "2025-01-03T01:08:01.482918", | n | 39 | "metadata_modified": "2025-01-03T01:08:01.999057", |
40 | "name": "causalfairml-via-rpid", | 40 | "name": "causalfairml-via-rpid", | ||
41 | "notes": "A decision can be defined as fair if equal individuals are | 41 | "notes": "A decision can be defined as fair if equal individuals are | ||
42 | treated equally and unequals are treated unequally. Adopting this | 42 | treated equally and unequals are treated unequally. Adopting this | ||
43 | definition, the task of designing machine learning (ML) models that | 43 | definition, the task of designing machine learning (ML) models that | ||
44 | mitigate unfairness in automated decision-making systems must include | 44 | mitigate unfairness in automated decision-making systems must include | ||
45 | causal thinking when introducing protected attributes: Following a | 45 | causal thinking when introducing protected attributes: Following a | ||
46 | recent proposal, we define individuals as being normatively equal if | 46 | recent proposal, we define individuals as being normatively equal if | ||
47 | they are equal in a fictitious, normatively desired (FiND) world, | 47 | they are equal in a fictitious, normatively desired (FiND) world, | ||
48 | where the protected attributes have no (direct or indirect) causal | 48 | where the protected attributes have no (direct or indirect) causal | ||
49 | effect on the target.", | 49 | effect on the target.", | ||
n | 50 | "num_resources": 0, | n | 50 | "num_resources": 1, |
51 | "num_tags": 3, | 51 | "num_tags": 3, | ||
52 | "organization": { | 52 | "organization": { | ||
53 | "approval_status": "approved", | 53 | "approval_status": "approved", | ||
54 | "created": "2024-11-25T12:11:38.292601", | 54 | "created": "2024-11-25T12:11:38.292601", | ||
55 | "description": "", | 55 | "description": "", | ||
56 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 56 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
57 | "image_url": "", | 57 | "image_url": "", | ||
58 | "is_organization": true, | 58 | "is_organization": true, | ||
59 | "name": "no-organization", | 59 | "name": "no-organization", | ||
60 | "state": "active", | 60 | "state": "active", | ||
61 | "title": "No Organization", | 61 | "title": "No Organization", | ||
62 | "type": "organization" | 62 | "type": "organization" | ||
63 | }, | 63 | }, | ||
64 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 64 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
65 | "private": false, | 65 | "private": false, | ||
66 | "relationships_as_object": [], | 66 | "relationships_as_object": [], | ||
67 | "relationships_as_subject": [], | 67 | "relationships_as_subject": [], | ||
t | 68 | "resources": [], | t | 68 | "resources": [ |
69 | { | ||||
70 | "cache_last_updated": null, | ||||
71 | "cache_url": null, | ||||
72 | "created": "2025-01-03T00:16:35", | ||||
73 | "data": [ | ||||
74 | "dcterms:title", | ||||
75 | "dcterms:accessRights", | ||||
76 | "dcterms:creator", | ||||
77 | "dcterms:description", | ||||
78 | "dcterms:issued", | ||||
79 | "dcterms:language", | ||||
80 | "dcterms:identifier", | ||||
81 | "dcat:theme", | ||||
82 | "dcterms:type", | ||||
83 | "dcat:keyword", | ||||
84 | "dcat:landingPage", | ||||
85 | "dcterms:hasVersion", | ||||
86 | "dcterms:format", | ||||
87 | "mls:task", | ||||
88 | "datacite:isDescribedBy" | ||||
89 | ], | ||||
90 | "description": "The json representation of the dataset with its | ||||
91 | distributions based on DCAT.", | ||||
92 | "format": "JSON", | ||||
93 | "hash": "", | ||||
94 | "id": "a00009c6-7a1b-4424-8005-be686788d802", | ||||
95 | "last_modified": "2025-01-03T01:08:01.992030", | ||||
96 | "metadata_modified": "2025-01-03T01:08:02.002437", | ||||
97 | "mimetype": "application/json", | ||||
98 | "mimetype_inner": null, | ||||
99 | "name": "Original Metadata", | ||||
100 | "package_id": "6d0b3450-7ca4-4b7c-bb15-5fc60aecb162", | ||||
101 | "position": 0, | ||||
102 | "resource_type": null, | ||||
103 | "size": 1197, | ||||
104 | "state": "active", | ||||
105 | "url": | ||||
106 | resource/a00009c6-7a1b-4424-8005-be686788d802/download/metadata.json", | ||||
107 | "url_type": "upload" | ||||
108 | } | ||||
109 | ], | ||||
69 | "services_used_list": "", | 110 | "services_used_list": "", | ||
70 | "state": "active", | 111 | "state": "active", | ||
71 | "tags": [ | 112 | "tags": [ | ||
72 | { | 113 | { | ||
73 | "display_name": "Causal Fair Machine Learning", | 114 | "display_name": "Causal Fair Machine Learning", | ||
74 | "id": "f14e30be-7100-4641-8cef-5bb3a4467047", | 115 | "id": "f14e30be-7100-4641-8cef-5bb3a4467047", | ||
75 | "name": "Causal Fair Machine Learning", | 116 | "name": "Causal Fair Machine Learning", | ||
76 | "state": "active", | 117 | "state": "active", | ||
77 | "vocabulary_id": null | 118 | "vocabulary_id": null | ||
78 | }, | 119 | }, | ||
79 | { | 120 | { | ||
80 | "display_name": "Fairness in Machine Learning", | 121 | "display_name": "Fairness in Machine Learning", | ||
81 | "id": "06a97f88-94ec-4d67-8bdb-edb25a5d1617", | 122 | "id": "06a97f88-94ec-4d67-8bdb-edb25a5d1617", | ||
82 | "name": "Fairness in Machine Learning", | 123 | "name": "Fairness in Machine Learning", | ||
83 | "state": "active", | 124 | "state": "active", | ||
84 | "vocabulary_id": null | 125 | "vocabulary_id": null | ||
85 | }, | 126 | }, | ||
86 | { | 127 | { | ||
87 | "display_name": "Rank-Preserving Interventional Distributions", | 128 | "display_name": "Rank-Preserving Interventional Distributions", | ||
88 | "id": "af8c012e-5348-43d8-8f7d-a505ca92e2dc", | 129 | "id": "af8c012e-5348-43d8-8f7d-a505ca92e2dc", | ||
89 | "name": "Rank-Preserving Interventional Distributions", | 130 | "name": "Rank-Preserving Interventional Distributions", | ||
90 | "state": "active", | 131 | "state": "active", | ||
91 | "vocabulary_id": null | 132 | "vocabulary_id": null | ||
92 | } | 133 | } | ||
93 | ], | 134 | ], | ||
94 | "title": "CausalFairML via RPID", | 135 | "title": "CausalFairML via RPID", | ||
95 | "type": "dataset", | 136 | "type": "dataset", | ||
96 | "version": "" | 137 | "version": "" | ||
97 | } | 138 | } |