Changes
On December 16, 2024 at 6:41:21 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Optimally Scheduling CNN Convolutions for Efficient Memory Access -
Changed value of field
doi_date_published
to2024-12-16
in Optimally Scheduling CNN Convolutions for Efficient Memory Access -
Added resource Original Metadata to Optimally Scheduling CNN Convolutions for Efficient Memory Access
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Arthur Stoutchinin", | 3 | "author": "Arthur Stoutchinin", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.1902.01492", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.1902.01492", | ||
8 | "doi": "10.57702/bvggy5v1", | 8 | "doi": "10.57702/bvggy5v1", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-16", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Francesco Conti", | 15 | "extra_author": "Francesco Conti", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Luca Benini", | 19 | "extra_author": "Luca Benini", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | } | 21 | } | ||
22 | ], | 22 | ], | ||
23 | "groups": [ | 23 | "groups": [ | ||
24 | { | 24 | { | ||
25 | "description": "", | 25 | "description": "", | ||
26 | "display_name": "Convolutional Neural Networks", | 26 | "display_name": "Convolutional Neural Networks", | ||
27 | "id": "acd07bab-4528-49f3-984f-03cf9614b5ab", | 27 | "id": "acd07bab-4528-49f3-984f-03cf9614b5ab", | ||
28 | "image_display_url": "", | 28 | "image_display_url": "", | ||
29 | "name": "convolutional-neural-networks", | 29 | "name": "convolutional-neural-networks", | ||
30 | "title": "Convolutional Neural Networks" | 30 | "title": "Convolutional Neural Networks" | ||
31 | } | 31 | } | ||
32 | ], | 32 | ], | ||
33 | "id": "a29e4afc-f745-401e-a382-7abcf5b43bc2", | 33 | "id": "a29e4afc-f745-401e-a382-7abcf5b43bc2", | ||
34 | "isopen": false, | 34 | "isopen": false, | ||
35 | "landing_page": "", | 35 | "landing_page": "", | ||
36 | "license_title": null, | 36 | "license_title": null, | ||
37 | "link_orkg": "", | 37 | "link_orkg": "", | ||
38 | "metadata_created": "2024-12-16T18:41:20.195930", | 38 | "metadata_created": "2024-12-16T18:41:20.195930", | ||
n | 39 | "metadata_modified": "2024-12-16T18:41:20.195936", | n | 39 | "metadata_modified": "2024-12-16T18:41:20.552591", |
40 | "name": | 40 | "name": | ||
41 | "optimally-scheduling-cnn-convolutions-for-efficient-memory-access", | 41 | "optimally-scheduling-cnn-convolutions-for-efficient-memory-access", | ||
42 | "notes": "The dataset used in this paper is a CNN convolutional | 42 | "notes": "The dataset used in this paper is a CNN convolutional | ||
43 | layer loop-nest, which is a 6-level loop-nest representing the | 43 | layer loop-nest, which is a 6-level loop-nest representing the | ||
44 | convolutional layer of a CNN.", | 44 | convolutional layer of a CNN.", | ||
n | 45 | "num_resources": 0, | n | 45 | "num_resources": 1, |
46 | "num_tags": 4, | 46 | "num_tags": 4, | ||
47 | "organization": { | 47 | "organization": { | ||
48 | "approval_status": "approved", | 48 | "approval_status": "approved", | ||
49 | "created": "2024-11-25T12:11:38.292601", | 49 | "created": "2024-11-25T12:11:38.292601", | ||
50 | "description": "", | 50 | "description": "", | ||
51 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 51 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
52 | "image_url": "", | 52 | "image_url": "", | ||
53 | "is_organization": true, | 53 | "is_organization": true, | ||
54 | "name": "no-organization", | 54 | "name": "no-organization", | ||
55 | "state": "active", | 55 | "state": "active", | ||
56 | "title": "No Organization", | 56 | "title": "No Organization", | ||
57 | "type": "organization" | 57 | "type": "organization" | ||
58 | }, | 58 | }, | ||
59 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 59 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
60 | "private": false, | 60 | "private": false, | ||
61 | "relationships_as_object": [], | 61 | "relationships_as_object": [], | ||
62 | "relationships_as_subject": [], | 62 | "relationships_as_subject": [], | ||
t | 63 | "resources": [], | t | 63 | "resources": [ |
64 | { | ||||
65 | "cache_last_updated": null, | ||||
66 | "cache_url": null, | ||||
67 | "created": "2024-12-16T18:25:36", | ||||
68 | "data": [ | ||||
69 | "dcterms:title", | ||||
70 | "dcterms:accessRights", | ||||
71 | "dcterms:creator", | ||||
72 | "dcterms:description", | ||||
73 | "dcterms:issued", | ||||
74 | "dcterms:language", | ||||
75 | "dcterms:identifier", | ||||
76 | "dcat:theme", | ||||
77 | "dcterms:type", | ||||
78 | "dcat:keyword", | ||||
79 | "dcat:landingPage", | ||||
80 | "dcterms:hasVersion", | ||||
81 | "dcterms:format", | ||||
82 | "mls:task", | ||||
83 | "datacite:isDescribedBy" | ||||
84 | ], | ||||
85 | "description": "The json representation of the dataset with its | ||||
86 | distributions based on DCAT.", | ||||
87 | "format": "JSON", | ||||
88 | "hash": "", | ||||
89 | "id": "d6b3430e-97e0-46de-873e-a7ebc25da00d", | ||||
90 | "last_modified": "2024-12-16T18:41:20.543072", | ||||
91 | "metadata_modified": "2024-12-16T18:41:20.555806", | ||||
92 | "mimetype": "application/json", | ||||
93 | "mimetype_inner": null, | ||||
94 | "name": "Original Metadata", | ||||
95 | "package_id": "a29e4afc-f745-401e-a382-7abcf5b43bc2", | ||||
96 | "position": 0, | ||||
97 | "resource_type": null, | ||||
98 | "size": 841, | ||||
99 | "state": "active", | ||||
100 | "url": | ||||
101 | resource/d6b3430e-97e0-46de-873e-a7ebc25da00d/download/metadata.json", | ||||
102 | "url_type": "upload" | ||||
103 | } | ||||
104 | ], | ||||
64 | "services_used_list": "", | 105 | "services_used_list": "", | ||
65 | "state": "active", | 106 | "state": "active", | ||
66 | "tags": [ | 107 | "tags": [ | ||
67 | { | 108 | { | ||
68 | "display_name": "CNN", | 109 | "display_name": "CNN", | ||
69 | "id": "66ec0da0-d205-4a39-90c6-bae7e7b1cbd6", | 110 | "id": "66ec0da0-d205-4a39-90c6-bae7e7b1cbd6", | ||
70 | "name": "CNN", | 111 | "name": "CNN", | ||
71 | "state": "active", | 112 | "state": "active", | ||
72 | "vocabulary_id": null | 113 | "vocabulary_id": null | ||
73 | }, | 114 | }, | ||
74 | { | 115 | { | ||
75 | "display_name": "Convolutional Neural Networks", | 116 | "display_name": "Convolutional Neural Networks", | ||
76 | "id": "a167095b-f2a5-4c27-8f27-c413611cc4ee", | 117 | "id": "a167095b-f2a5-4c27-8f27-c413611cc4ee", | ||
77 | "name": "Convolutional Neural Networks", | 118 | "name": "Convolutional Neural Networks", | ||
78 | "state": "active", | 119 | "state": "active", | ||
79 | "vocabulary_id": null | 120 | "vocabulary_id": null | ||
80 | }, | 121 | }, | ||
81 | { | 122 | { | ||
82 | "display_name": "Efficient Memory Access", | 123 | "display_name": "Efficient Memory Access", | ||
83 | "id": "00078f29-7485-405e-bbc2-449b9d2cba79", | 124 | "id": "00078f29-7485-405e-bbc2-449b9d2cba79", | ||
84 | "name": "Efficient Memory Access", | 125 | "name": "Efficient Memory Access", | ||
85 | "state": "active", | 126 | "state": "active", | ||
86 | "vocabulary_id": null | 127 | "vocabulary_id": null | ||
87 | }, | 128 | }, | ||
88 | { | 129 | { | ||
89 | "display_name": "Memory Access", | 130 | "display_name": "Memory Access", | ||
90 | "id": "1a5273ca-7b6d-4851-a707-8cfa61ee29e4", | 131 | "id": "1a5273ca-7b6d-4851-a707-8cfa61ee29e4", | ||
91 | "name": "Memory Access", | 132 | "name": "Memory Access", | ||
92 | "state": "active", | 133 | "state": "active", | ||
93 | "vocabulary_id": null | 134 | "vocabulary_id": null | ||
94 | } | 135 | } | ||
95 | ], | 136 | ], | ||
96 | "title": "Optimally Scheduling CNN Convolutions for Efficient Memory | 137 | "title": "Optimally Scheduling CNN Convolutions for Efficient Memory | ||
97 | Access", | 138 | Access", | ||
98 | "type": "dataset", | 139 | "type": "dataset", | ||
99 | "version": "" | 140 | "version": "" | ||
100 | } | 141 | } |