Changes
On January 3, 2025 at 12:13:44 AM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Aaren: Efficient Attention for Sequence Modeling -
Changed value of field
doi_date_published
to2025-01-03
in Aaren: Efficient Attention for Sequence Modeling -
Added resource Original Metadata to Aaren: Efficient Attention for Sequence Modeling
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Leo Feng", | 3 | "author": "Leo Feng", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2405.13956", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2405.13956", | ||
8 | "doi": "10.57702/uuab6kw5", | 8 | "doi": "10.57702/uuab6kw5", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2025-01-03", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Frederick Tung", | 15 | "extra_author": "Frederick Tung", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Hossein Hajimirsadeghi", | 19 | "extra_author": "Hossein Hajimirsadeghi", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Mohamed Osama Ahmed", | 23 | "extra_author": "Mohamed Osama Ahmed", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Yoshua Bengio", | 27 | "extra_author": "Yoshua Bengio", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | }, | 29 | }, | ||
30 | { | 30 | { | ||
31 | "extra_author": "Greg Mori", | 31 | "extra_author": "Greg Mori", | ||
32 | "orcid": "" | 32 | "orcid": "" | ||
33 | } | 33 | } | ||
34 | ], | 34 | ], | ||
35 | "groups": [ | 35 | "groups": [ | ||
36 | { | 36 | { | ||
37 | "description": "", | 37 | "description": "", | ||
38 | "display_name": "Attention Mechanism", | 38 | "display_name": "Attention Mechanism", | ||
39 | "id": "110729ce-05fc-40a7-9170-09e83ec1044b", | 39 | "id": "110729ce-05fc-40a7-9170-09e83ec1044b", | ||
40 | "image_display_url": "", | 40 | "image_display_url": "", | ||
41 | "name": "attention-mechanism", | 41 | "name": "attention-mechanism", | ||
42 | "title": "Attention Mechanism" | 42 | "title": "Attention Mechanism" | ||
43 | }, | 43 | }, | ||
44 | { | 44 | { | ||
45 | "description": "", | 45 | "description": "", | ||
46 | "display_name": "Sequence Modeling", | 46 | "display_name": "Sequence Modeling", | ||
47 | "id": "381e97e3-10e9-4ebb-ad39-3d7878d2362a", | 47 | "id": "381e97e3-10e9-4ebb-ad39-3d7878d2362a", | ||
48 | "image_display_url": "", | 48 | "image_display_url": "", | ||
49 | "name": "sequence-modeling", | 49 | "name": "sequence-modeling", | ||
50 | "title": "Sequence Modeling" | 50 | "title": "Sequence Modeling" | ||
51 | } | 51 | } | ||
52 | ], | 52 | ], | ||
53 | "id": "cf57bd83-75f1-418d-be87-819040021e99", | 53 | "id": "cf57bd83-75f1-418d-be87-819040021e99", | ||
54 | "isopen": false, | 54 | "isopen": false, | ||
55 | "landing_page": "https://arxiv.org/abs/2305.14567", | 55 | "landing_page": "https://arxiv.org/abs/2305.14567", | ||
56 | "license_title": null, | 56 | "license_title": null, | ||
57 | "link_orkg": "", | 57 | "link_orkg": "", | ||
58 | "metadata_created": "2025-01-03T00:13:42.584202", | 58 | "metadata_created": "2025-01-03T00:13:42.584202", | ||
n | 59 | "metadata_modified": "2025-01-03T00:13:42.584208", | n | 59 | "metadata_modified": "2025-01-03T00:13:43.204614", |
60 | "name": "aaren--efficient-attention-for-sequence-modeling", | 60 | "name": "aaren--efficient-attention-for-sequence-modeling", | ||
61 | "notes": "The dataset used in the paper is a collection of 38 | 61 | "notes": "The dataset used in the paper is a collection of 38 | ||
62 | datasets spread across four popular sequential problem settings: | 62 | datasets spread across four popular sequential problem settings: | ||
63 | reinforcement learning, event forecasting, time series classification, | 63 | reinforcement learning, event forecasting, time series classification, | ||
64 | and time series forecasting.", | 64 | and time series forecasting.", | ||
n | 65 | "num_resources": 0, | n | 65 | "num_resources": 1, |
66 | "num_tags": 6, | 66 | "num_tags": 6, | ||
67 | "organization": { | 67 | "organization": { | ||
68 | "approval_status": "approved", | 68 | "approval_status": "approved", | ||
69 | "created": "2024-11-25T12:11:38.292601", | 69 | "created": "2024-11-25T12:11:38.292601", | ||
70 | "description": "", | 70 | "description": "", | ||
71 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 71 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
72 | "image_url": "", | 72 | "image_url": "", | ||
73 | "is_organization": true, | 73 | "is_organization": true, | ||
74 | "name": "no-organization", | 74 | "name": "no-organization", | ||
75 | "state": "active", | 75 | "state": "active", | ||
76 | "title": "No Organization", | 76 | "title": "No Organization", | ||
77 | "type": "organization" | 77 | "type": "organization" | ||
78 | }, | 78 | }, | ||
79 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 79 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
80 | "private": false, | 80 | "private": false, | ||
81 | "relationships_as_object": [], | 81 | "relationships_as_object": [], | ||
82 | "relationships_as_subject": [], | 82 | "relationships_as_subject": [], | ||
t | 83 | "resources": [], | t | 83 | "resources": [ |
84 | { | ||||
85 | "cache_last_updated": null, | ||||
86 | "cache_url": null, | ||||
87 | "created": "2025-01-03T00:16:32", | ||||
88 | "data": [ | ||||
89 | "dcterms:title", | ||||
90 | "dcterms:accessRights", | ||||
91 | "dcterms:creator", | ||||
92 | "dcterms:description", | ||||
93 | "dcterms:issued", | ||||
94 | "dcterms:language", | ||||
95 | "dcterms:identifier", | ||||
96 | "dcat:theme", | ||||
97 | "dcterms:type", | ||||
98 | "dcat:keyword", | ||||
99 | "dcat:landingPage", | ||||
100 | "dcterms:hasVersion", | ||||
101 | "dcterms:format", | ||||
102 | "mls:task", | ||||
103 | "datacite:isDescribedBy" | ||||
104 | ], | ||||
105 | "description": "The json representation of the dataset with its | ||||
106 | distributions based on DCAT.", | ||||
107 | "format": "JSON", | ||||
108 | "hash": "", | ||||
109 | "id": "d059322e-478c-4b0d-bf5e-3fbd43e7b96d", | ||||
110 | "last_modified": "2025-01-03T00:13:43.196475", | ||||
111 | "metadata_modified": "2025-01-03T00:13:43.207381", | ||||
112 | "mimetype": "application/json", | ||||
113 | "mimetype_inner": null, | ||||
114 | "name": "Original Metadata", | ||||
115 | "package_id": "cf57bd83-75f1-418d-be87-819040021e99", | ||||
116 | "position": 0, | ||||
117 | "resource_type": null, | ||||
118 | "size": 1091, | ||||
119 | "state": "active", | ||||
120 | "url": | ||||
121 | resource/d059322e-478c-4b0d-bf5e-3fbd43e7b96d/download/metadata.json", | ||||
122 | "url_type": "upload" | ||||
123 | } | ||||
124 | ], | ||||
84 | "services_used_list": "", | 125 | "services_used_list": "", | ||
85 | "state": "active", | 126 | "state": "active", | ||
86 | "tags": [ | 127 | "tags": [ | ||
87 | { | 128 | { | ||
88 | "display_name": "Attention Mechanism", | 129 | "display_name": "Attention Mechanism", | ||
89 | "id": "0e72df90-6f90-4068-b370-0ec0bb0170f7", | 130 | "id": "0e72df90-6f90-4068-b370-0ec0bb0170f7", | ||
90 | "name": "Attention Mechanism", | 131 | "name": "Attention Mechanism", | ||
91 | "state": "active", | 132 | "state": "active", | ||
92 | "vocabulary_id": null | 133 | "vocabulary_id": null | ||
93 | }, | 134 | }, | ||
94 | { | 135 | { | ||
95 | "display_name": "Event Forecasting", | 136 | "display_name": "Event Forecasting", | ||
96 | "id": "91956d97-cd85-4da2-a109-3375f6d9b811", | 137 | "id": "91956d97-cd85-4da2-a109-3375f6d9b811", | ||
97 | "name": "Event Forecasting", | 138 | "name": "Event Forecasting", | ||
98 | "state": "active", | 139 | "state": "active", | ||
99 | "vocabulary_id": null | 140 | "vocabulary_id": null | ||
100 | }, | 141 | }, | ||
101 | { | 142 | { | ||
102 | "display_name": "Reinforcement Learning", | 143 | "display_name": "Reinforcement Learning", | ||
103 | "id": "0bd14238-9c5d-4905-8165-c7e5a0c0884c", | 144 | "id": "0bd14238-9c5d-4905-8165-c7e5a0c0884c", | ||
104 | "name": "Reinforcement Learning", | 145 | "name": "Reinforcement Learning", | ||
105 | "state": "active", | 146 | "state": "active", | ||
106 | "vocabulary_id": null | 147 | "vocabulary_id": null | ||
107 | }, | 148 | }, | ||
108 | { | 149 | { | ||
109 | "display_name": "Sequence Modeling", | 150 | "display_name": "Sequence Modeling", | ||
110 | "id": "d8f712bb-be23-4856-a42e-fb9d0e9520f4", | 151 | "id": "d8f712bb-be23-4856-a42e-fb9d0e9520f4", | ||
111 | "name": "Sequence Modeling", | 152 | "name": "Sequence Modeling", | ||
112 | "state": "active", | 153 | "state": "active", | ||
113 | "vocabulary_id": null | 154 | "vocabulary_id": null | ||
114 | }, | 155 | }, | ||
115 | { | 156 | { | ||
116 | "display_name": "Time Series Classification", | 157 | "display_name": "Time Series Classification", | ||
117 | "id": "0def0cc1-1ab0-4b31-8cff-dbe76fc5b4a2", | 158 | "id": "0def0cc1-1ab0-4b31-8cff-dbe76fc5b4a2", | ||
118 | "name": "Time Series Classification", | 159 | "name": "Time Series Classification", | ||
119 | "state": "active", | 160 | "state": "active", | ||
120 | "vocabulary_id": null | 161 | "vocabulary_id": null | ||
121 | }, | 162 | }, | ||
122 | { | 163 | { | ||
123 | "display_name": "Time Series Forecasting", | 164 | "display_name": "Time Series Forecasting", | ||
124 | "id": "91eebf57-0b5d-4349-9802-060b39ae2bdf", | 165 | "id": "91eebf57-0b5d-4349-9802-060b39ae2bdf", | ||
125 | "name": "Time Series Forecasting", | 166 | "name": "Time Series Forecasting", | ||
126 | "state": "active", | 167 | "state": "active", | ||
127 | "vocabulary_id": null | 168 | "vocabulary_id": null | ||
128 | } | 169 | } | ||
129 | ], | 170 | ], | ||
130 | "title": "Aaren: Efficient Attention for Sequence Modeling", | 171 | "title": "Aaren: Efficient Attention for Sequence Modeling", | ||
131 | "type": "dataset", | 172 | "type": "dataset", | ||
132 | "version": "" | 173 | "version": "" | ||
133 | } | 174 | } |