Changes
On December 16, 2024 at 8:48:53 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Optimal Weighted (cid:96)2 Regularization in Overparameterized Linear Regression -
Changed value of field
doi_date_published
to2024-12-16
in Optimal Weighted (cid:96)2 Regularization in Overparameterized Linear Regression -
Added resource Original Metadata to Optimal Weighted (cid:96)2 Regularization in Overparameterized Linear Regression
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Denny Wu", | 3 | "author": "Denny Wu", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.1903.08560", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.1903.08560", | ||
8 | "doi": "10.57702/o6qyo16z", | 8 | "doi": "10.57702/o6qyo16z", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-16", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Ji Xu", | 15 | "extra_author": "Ji Xu", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | } | 17 | } | ||
18 | ], | 18 | ], | ||
19 | "groups": [ | 19 | "groups": [ | ||
20 | { | 20 | { | ||
21 | "description": "", | 21 | "description": "", | ||
22 | "display_name": "Linear Regression", | 22 | "display_name": "Linear Regression", | ||
23 | "id": "bc106326-f7c9-4361-bf80-02f2e15dddcb", | 23 | "id": "bc106326-f7c9-4361-bf80-02f2e15dddcb", | ||
24 | "image_display_url": "", | 24 | "image_display_url": "", | ||
25 | "name": "linear-regression", | 25 | "name": "linear-regression", | ||
26 | "title": "Linear Regression" | 26 | "title": "Linear Regression" | ||
27 | }, | 27 | }, | ||
28 | { | 28 | { | ||
29 | "description": "", | 29 | "description": "", | ||
30 | "display_name": "Overparameterization", | 30 | "display_name": "Overparameterization", | ||
31 | "id": "010d2481-394a-411e-bc21-8b559d62a9e4", | 31 | "id": "010d2481-394a-411e-bc21-8b559d62a9e4", | ||
32 | "image_display_url": "", | 32 | "image_display_url": "", | ||
33 | "name": "overparameterization", | 33 | "name": "overparameterization", | ||
34 | "title": "Overparameterization" | 34 | "title": "Overparameterization" | ||
35 | } | 35 | } | ||
36 | ], | 36 | ], | ||
37 | "id": "c2b8c832-4f67-4440-a040-fd261e37e1c3", | 37 | "id": "c2b8c832-4f67-4440-a040-fd261e37e1c3", | ||
38 | "isopen": false, | 38 | "isopen": false, | ||
39 | "landing_page": "https://ieeexplore.ieee.org/document/9161114", | 39 | "landing_page": "https://ieeexplore.ieee.org/document/9161114", | ||
40 | "license_title": null, | 40 | "license_title": null, | ||
41 | "link_orkg": "", | 41 | "link_orkg": "", | ||
42 | "metadata_created": "2024-12-16T20:48:52.241648", | 42 | "metadata_created": "2024-12-16T20:48:52.241648", | ||
n | 43 | "metadata_modified": "2024-12-16T20:48:52.241653", | n | 43 | "metadata_modified": "2024-12-16T20:48:52.656335", |
44 | "name": | 44 | "name": | ||
45 | hted--cid-96-2-regularization-in-overparameterized-linear-regression", | 45 | hted--cid-96-2-regularization-in-overparameterized-linear-regression", | ||
46 | "notes": "The dataset is used to study the optimal weighted | 46 | "notes": "The dataset is used to study the optimal weighted | ||
47 | (cid:96)2 regularization in overparameterized linear regression. The | 47 | (cid:96)2 regularization in overparameterized linear regression. The | ||
48 | dataset consists of 1000 samples, each with 100 features, and is | 48 | dataset consists of 1000 samples, each with 100 features, and is | ||
49 | generated using a linear regression model with a Gaussian prior.", | 49 | generated using a linear regression model with a Gaussian prior.", | ||
n | 50 | "num_resources": 0, | n | 50 | "num_resources": 1, |
51 | "num_tags": 4, | 51 | "num_tags": 4, | ||
52 | "organization": { | 52 | "organization": { | ||
53 | "approval_status": "approved", | 53 | "approval_status": "approved", | ||
54 | "created": "2024-11-25T12:11:38.292601", | 54 | "created": "2024-11-25T12:11:38.292601", | ||
55 | "description": "", | 55 | "description": "", | ||
56 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 56 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
57 | "image_url": "", | 57 | "image_url": "", | ||
58 | "is_organization": true, | 58 | "is_organization": true, | ||
59 | "name": "no-organization", | 59 | "name": "no-organization", | ||
60 | "state": "active", | 60 | "state": "active", | ||
61 | "title": "No Organization", | 61 | "title": "No Organization", | ||
62 | "type": "organization" | 62 | "type": "organization" | ||
63 | }, | 63 | }, | ||
64 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 64 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
65 | "private": false, | 65 | "private": false, | ||
66 | "relationships_as_object": [], | 66 | "relationships_as_object": [], | ||
67 | "relationships_as_subject": [], | 67 | "relationships_as_subject": [], | ||
t | 68 | "resources": [], | t | 68 | "resources": [ |
69 | { | ||||
70 | "cache_last_updated": null, | ||||
71 | "cache_url": null, | ||||
72 | "created": "2024-12-16T18:25:46", | ||||
73 | "data": [ | ||||
74 | "dcterms:title", | ||||
75 | "dcterms:accessRights", | ||||
76 | "dcterms:creator", | ||||
77 | "dcterms:description", | ||||
78 | "dcterms:issued", | ||||
79 | "dcterms:language", | ||||
80 | "dcterms:identifier", | ||||
81 | "dcat:theme", | ||||
82 | "dcterms:type", | ||||
83 | "dcat:keyword", | ||||
84 | "dcat:landingPage", | ||||
85 | "dcterms:hasVersion", | ||||
86 | "dcterms:format", | ||||
87 | "mls:task", | ||||
88 | "datacite:isDescribedBy" | ||||
89 | ], | ||||
90 | "description": "The json representation of the dataset with its | ||||
91 | distributions based on DCAT.", | ||||
92 | "format": "JSON", | ||||
93 | "hash": "", | ||||
94 | "id": "85a19328-8e1e-4028-b58b-a48e99d6486e", | ||||
95 | "last_modified": "2024-12-16T20:48:52.648978", | ||||
96 | "metadata_modified": "2024-12-16T20:48:52.659192", | ||||
97 | "mimetype": "application/json", | ||||
98 | "mimetype_inner": null, | ||||
99 | "name": "Original Metadata", | ||||
100 | "package_id": "c2b8c832-4f67-4440-a040-fd261e37e1c3", | ||||
101 | "position": 0, | ||||
102 | "resource_type": null, | ||||
103 | "size": 957, | ||||
104 | "state": "active", | ||||
105 | "url": | ||||
106 | resource/85a19328-8e1e-4028-b58b-a48e99d6486e/download/metadata.json", | ||||
107 | "url_type": "upload" | ||||
108 | } | ||||
109 | ], | ||||
69 | "services_used_list": "", | 110 | "services_used_list": "", | ||
70 | "state": "active", | 111 | "state": "active", | ||
71 | "tags": [ | 112 | "tags": [ | ||
72 | { | 113 | { | ||
73 | "display_name": "Gaussian prior", | 114 | "display_name": "Gaussian prior", | ||
74 | "id": "443d876f-660a-485a-8f66-40cb38a5f9d8", | 115 | "id": "443d876f-660a-485a-8f66-40cb38a5f9d8", | ||
75 | "name": "Gaussian prior", | 116 | "name": "Gaussian prior", | ||
76 | "state": "active", | 117 | "state": "active", | ||
77 | "vocabulary_id": null | 118 | "vocabulary_id": null | ||
78 | }, | 119 | }, | ||
79 | { | 120 | { | ||
80 | "display_name": "linear regression", | 121 | "display_name": "linear regression", | ||
81 | "id": "1e98b710-c04a-4147-baf4-fe6ff55b2ece", | 122 | "id": "1e98b710-c04a-4147-baf4-fe6ff55b2ece", | ||
82 | "name": "linear regression", | 123 | "name": "linear regression", | ||
83 | "state": "active", | 124 | "state": "active", | ||
84 | "vocabulary_id": null | 125 | "vocabulary_id": null | ||
85 | }, | 126 | }, | ||
86 | { | 127 | { | ||
87 | "display_name": "optimal regularization", | 128 | "display_name": "optimal regularization", | ||
88 | "id": "516b53c5-aca4-40f0-b51d-004bb32170af", | 129 | "id": "516b53c5-aca4-40f0-b51d-004bb32170af", | ||
89 | "name": "optimal regularization", | 130 | "name": "optimal regularization", | ||
90 | "state": "active", | 131 | "state": "active", | ||
91 | "vocabulary_id": null | 132 | "vocabulary_id": null | ||
92 | }, | 133 | }, | ||
93 | { | 134 | { | ||
94 | "display_name": "overparameterization", | 135 | "display_name": "overparameterization", | ||
95 | "id": "921ae574-5c56-407f-aa12-345b5674fc46", | 136 | "id": "921ae574-5c56-407f-aa12-345b5674fc46", | ||
96 | "name": "overparameterization", | 137 | "name": "overparameterization", | ||
97 | "state": "active", | 138 | "state": "active", | ||
98 | "vocabulary_id": null | 139 | "vocabulary_id": null | ||
99 | } | 140 | } | ||
100 | ], | 141 | ], | ||
101 | "title": "Optimal Weighted (cid:96)2 Regularization in | 142 | "title": "Optimal Weighted (cid:96)2 Regularization in | ||
102 | Overparameterized Linear Regression", | 143 | Overparameterized Linear Regression", | ||
103 | "type": "dataset", | 144 | "type": "dataset", | ||
104 | "version": "" | 145 | "version": "" | ||
105 | } | 146 | } |