Changes
On December 2, 2024 at 11:21:09 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Sample-Efficient Robust Multi-Agent Reinforcement Learning in the Face of Environmental Uncertainty -
Changed value of field
doi_date_published
to2024-12-02
in Sample-Efficient Robust Multi-Agent Reinforcement Learning in the Face of Environmental Uncertainty -
Added resource Original Metadata to Sample-Efficient Robust Multi-Agent Reinforcement Learning in the Face of Environmental Uncertainty
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Laixi Shi", | 3 | "author": "Laixi Shi", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2404.18909", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2404.18909", | ||
8 | "doi": "10.57702/f3z2d670", | 8 | "doi": "10.57702/f3z2d670", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-02", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Eric Mazumdar", | 15 | "extra_author": "Eric Mazumdar", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Yuejie Chi", | 19 | "extra_author": "Yuejie Chi", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Adam Wierman", | 23 | "extra_author": "Adam Wierman", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | } | 25 | } | ||
26 | ], | 26 | ], | ||
27 | "groups": [ | 27 | "groups": [ | ||
28 | { | 28 | { | ||
29 | "description": "", | 29 | "description": "", | ||
30 | "display_name": "Game Theory", | 30 | "display_name": "Game Theory", | ||
31 | "id": "8ca5b88f-e5f4-48eb-b5d7-4718711e5fa6", | 31 | "id": "8ca5b88f-e5f4-48eb-b5d7-4718711e5fa6", | ||
32 | "image_display_url": "", | 32 | "image_display_url": "", | ||
33 | "name": "game-theory", | 33 | "name": "game-theory", | ||
34 | "title": "Game Theory" | 34 | "title": "Game Theory" | ||
35 | }, | 35 | }, | ||
36 | { | 36 | { | ||
37 | "description": "", | 37 | "description": "", | ||
38 | "display_name": "Multi-Agent Systems", | 38 | "display_name": "Multi-Agent Systems", | ||
39 | "id": "f6b3fbc4-745c-449d-a7c0-dc1d143b3d58", | 39 | "id": "f6b3fbc4-745c-449d-a7c0-dc1d143b3d58", | ||
40 | "image_display_url": "", | 40 | "image_display_url": "", | ||
41 | "name": "multi-agent-systems", | 41 | "name": "multi-agent-systems", | ||
42 | "title": "Multi-Agent Systems" | 42 | "title": "Multi-Agent Systems" | ||
43 | }, | 43 | }, | ||
44 | { | 44 | { | ||
45 | "description": "", | 45 | "description": "", | ||
46 | "display_name": "Reinforcement Learning", | 46 | "display_name": "Reinforcement Learning", | ||
47 | "id": "5f9e20df-0af0-4b7e-9637-e244d4a99379", | 47 | "id": "5f9e20df-0af0-4b7e-9637-e244d4a99379", | ||
48 | "image_display_url": "", | 48 | "image_display_url": "", | ||
49 | "name": "reinforcement-learning", | 49 | "name": "reinforcement-learning", | ||
50 | "title": "Reinforcement Learning" | 50 | "title": "Reinforcement Learning" | ||
51 | } | 51 | } | ||
52 | ], | 52 | ], | ||
53 | "id": "00a88f9a-08f6-4a4d-b938-b40be14bc503", | 53 | "id": "00a88f9a-08f6-4a4d-b938-b40be14bc503", | ||
54 | "isopen": false, | 54 | "isopen": false, | ||
55 | "landing_page": "https://arxiv.org/abs/2106.09453", | 55 | "landing_page": "https://arxiv.org/abs/2106.09453", | ||
56 | "license_title": null, | 56 | "license_title": null, | ||
57 | "link_orkg": "", | 57 | "link_orkg": "", | ||
58 | "metadata_created": "2024-12-02T23:21:07.607149", | 58 | "metadata_created": "2024-12-02T23:21:07.607149", | ||
n | 59 | "metadata_modified": "2024-12-02T23:21:07.607156", | n | 59 | "metadata_modified": "2024-12-02T23:21:08.157513", |
60 | "name": | 60 | "name": | ||
61 | gent-reinforcement-learning-in-the-face-of-environmental-uncertainty", | 61 | gent-reinforcement-learning-in-the-face-of-environmental-uncertainty", | ||
62 | "notes": "To overcome the sim-to-real gap in reinforcement learning | 62 | "notes": "To overcome the sim-to-real gap in reinforcement learning | ||
63 | (RL), learned policies must maintain robustness against environmental | 63 | (RL), learned policies must maintain robustness against environmental | ||
64 | uncertainties. While robust RL has been widely studied in single-agent | 64 | uncertainties. While robust RL has been widely studied in single-agent | ||
65 | regimes, in multi-agent environments, the problem remains | 65 | regimes, in multi-agent environments, the problem remains | ||
66 | understudied\u2014despite the fact that the problems posed by | 66 | understudied\u2014despite the fact that the problems posed by | ||
67 | environmental uncertainties are often exacerbated by strategic | 67 | environmental uncertainties are often exacerbated by strategic | ||
68 | interactions. This work focuses on learning in distributionally robust | 68 | interactions. This work focuses on learning in distributionally robust | ||
69 | Markov games (RMGs), a robust variant of standard Markov games, | 69 | Markov games (RMGs), a robust variant of standard Markov games, | ||
70 | wherein each agent aims to learn a policy that maximizes its own | 70 | wherein each agent aims to learn a policy that maximizes its own | ||
71 | worst-case performance when the deployed environment deviates within | 71 | worst-case performance when the deployed environment deviates within | ||
72 | its own prescribed uncertainty set. This results in a set of robust | 72 | its own prescribed uncertainty set. This results in a set of robust | ||
73 | equilibrium strategies for all agents that align with classic notions | 73 | equilibrium strategies for all agents that align with classic notions | ||
74 | of game-theoretic equilibria.", | 74 | of game-theoretic equilibria.", | ||
n | 75 | "num_resources": 0, | n | 75 | "num_resources": 1, |
76 | "num_tags": 3, | 76 | "num_tags": 3, | ||
77 | "organization": { | 77 | "organization": { | ||
78 | "approval_status": "approved", | 78 | "approval_status": "approved", | ||
79 | "created": "2024-11-25T12:11:38.292601", | 79 | "created": "2024-11-25T12:11:38.292601", | ||
80 | "description": "", | 80 | "description": "", | ||
81 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 81 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
82 | "image_url": "", | 82 | "image_url": "", | ||
83 | "is_organization": true, | 83 | "is_organization": true, | ||
84 | "name": "no-organization", | 84 | "name": "no-organization", | ||
85 | "state": "active", | 85 | "state": "active", | ||
86 | "title": "No Organization", | 86 | "title": "No Organization", | ||
87 | "type": "organization" | 87 | "type": "organization" | ||
88 | }, | 88 | }, | ||
89 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 89 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
90 | "private": false, | 90 | "private": false, | ||
91 | "relationships_as_object": [], | 91 | "relationships_as_object": [], | ||
92 | "relationships_as_subject": [], | 92 | "relationships_as_subject": [], | ||
t | 93 | "resources": [], | t | 93 | "resources": [ |
94 | { | ||||
95 | "cache_last_updated": null, | ||||
96 | "cache_url": null, | ||||
97 | "created": "2024-12-03T00:20:35", | ||||
98 | "data": [ | ||||
99 | "dcterms:title", | ||||
100 | "dcterms:accessRights", | ||||
101 | "dcterms:creator", | ||||
102 | "dcterms:description", | ||||
103 | "dcterms:issued", | ||||
104 | "dcterms:language", | ||||
105 | "dcterms:identifier", | ||||
106 | "dcat:theme", | ||||
107 | "dcterms:type", | ||||
108 | "dcat:keyword", | ||||
109 | "dcat:landingPage", | ||||
110 | "dcterms:hasVersion", | ||||
111 | "dcterms:format", | ||||
112 | "mls:task", | ||||
113 | "datacite:isDescribedBy" | ||||
114 | ], | ||||
115 | "description": "The json representation of the dataset with its | ||||
116 | distributions based on DCAT.", | ||||
117 | "format": "JSON", | ||||
118 | "hash": "", | ||||
119 | "id": "15461b39-5b32-4e24-9649-6c1b0b087df1", | ||||
120 | "last_modified": "2024-12-02T23:21:08.149895", | ||||
121 | "metadata_modified": "2024-12-02T23:21:08.160442", | ||||
122 | "mimetype": "application/json", | ||||
123 | "mimetype_inner": null, | ||||
124 | "name": "Original Metadata", | ||||
125 | "package_id": "00a88f9a-08f6-4a4d-b938-b40be14bc503", | ||||
126 | "position": 0, | ||||
127 | "resource_type": null, | ||||
128 | "size": 1609, | ||||
129 | "state": "active", | ||||
130 | "url": | ||||
131 | resource/15461b39-5b32-4e24-9649-6c1b0b087df1/download/metadata.json", | ||||
132 | "url_type": "upload" | ||||
133 | } | ||||
134 | ], | ||||
94 | "services_used_list": "", | 135 | "services_used_list": "", | ||
95 | "state": "active", | 136 | "state": "active", | ||
96 | "tags": [ | 137 | "tags": [ | ||
97 | { | 138 | { | ||
98 | "display_name": "game-theoretic equilibria", | 139 | "display_name": "game-theoretic equilibria", | ||
99 | "id": "d79a8a76-ceda-4b71-9c3e-0db0370204dc", | 140 | "id": "d79a8a76-ceda-4b71-9c3e-0db0370204dc", | ||
100 | "name": "game-theoretic equilibria", | 141 | "name": "game-theoretic equilibria", | ||
101 | "state": "active", | 142 | "state": "active", | ||
102 | "vocabulary_id": null | 143 | "vocabulary_id": null | ||
103 | }, | 144 | }, | ||
104 | { | 145 | { | ||
105 | "display_name": "multi-agent RL", | 146 | "display_name": "multi-agent RL", | ||
106 | "id": "e5ed8772-2330-43f6-81a2-e41ce6d2b2a3", | 147 | "id": "e5ed8772-2330-43f6-81a2-e41ce6d2b2a3", | ||
107 | "name": "multi-agent RL", | 148 | "name": "multi-agent RL", | ||
108 | "state": "active", | 149 | "state": "active", | ||
109 | "vocabulary_id": null | 150 | "vocabulary_id": null | ||
110 | }, | 151 | }, | ||
111 | { | 152 | { | ||
112 | "display_name": "robust RL", | 153 | "display_name": "robust RL", | ||
113 | "id": "0aefa7c2-8c20-4b50-b721-3bb9a241008f", | 154 | "id": "0aefa7c2-8c20-4b50-b721-3bb9a241008f", | ||
114 | "name": "robust RL", | 155 | "name": "robust RL", | ||
115 | "state": "active", | 156 | "state": "active", | ||
116 | "vocabulary_id": null | 157 | "vocabulary_id": null | ||
117 | } | 158 | } | ||
118 | ], | 159 | ], | ||
119 | "title": "Sample-Efficient Robust Multi-Agent Reinforcement Learning | 160 | "title": "Sample-Efficient Robust Multi-Agent Reinforcement Learning | ||
120 | in the Face of Environmental Uncertainty", | 161 | in the Face of Environmental Uncertainty", | ||
121 | "type": "dataset", | 162 | "type": "dataset", | ||
122 | "version": "" | 163 | "version": "" | ||
123 | } | 164 | } |