Changes
On December 3, 2024 at 9:58:56 AM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Counterfactual Data Augmentation with Denoising Diffusion for Graph Anomaly Detection -
Changed value of field
doi_date_published
to2024-12-03
in Counterfactual Data Augmentation with Denoising Diffusion for Graph Anomaly Detection -
Added resource Original Metadata to Counterfactual Data Augmentation with Denoising Diffusion for Graph Anomaly Detection
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Chunjing Xiao", | 3 | "author": "Chunjing Xiao", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2407.02143", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2407.02143", | ||
8 | "doi": "10.57702/7r7312uz", | 8 | "doi": "10.57702/7r7312uz", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-03", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Shikang Pang", | 15 | "extra_author": "Shikang Pang", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Xovee Xu", | 19 | "extra_author": "Xovee Xu", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Xuan Li", | 23 | "extra_author": "Xuan Li", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Goce Trajcevski", | 27 | "extra_author": "Goce Trajcevski", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | }, | 29 | }, | ||
30 | { | 30 | { | ||
31 | "extra_author": "Fan Zhou", | 31 | "extra_author": "Fan Zhou", | ||
32 | "orcid": "" | 32 | "orcid": "" | ||
33 | } | 33 | } | ||
34 | ], | 34 | ], | ||
35 | "groups": [ | 35 | "groups": [ | ||
36 | { | 36 | { | ||
37 | "description": "", | 37 | "description": "", | ||
38 | "display_name": "Graph Anomaly Detection", | 38 | "display_name": "Graph Anomaly Detection", | ||
39 | "id": "99861c49-bbee-4820-85e5-7b0cc4e14152", | 39 | "id": "99861c49-bbee-4820-85e5-7b0cc4e14152", | ||
40 | "image_display_url": "", | 40 | "image_display_url": "", | ||
41 | "name": "graph-anomaly-detection", | 41 | "name": "graph-anomaly-detection", | ||
42 | "title": "Graph Anomaly Detection" | 42 | "title": "Graph Anomaly Detection" | ||
43 | } | 43 | } | ||
44 | ], | 44 | ], | ||
45 | "id": "cb4a2d26-9c99-475a-a9c3-c15065ee498f", | 45 | "id": "cb4a2d26-9c99-475a-a9c3-c15065ee498f", | ||
46 | "isopen": false, | 46 | "isopen": false, | ||
47 | "landing_page": "https://github.com/ChunjingXiao/CAGAD", | 47 | "landing_page": "https://github.com/ChunjingXiao/CAGAD", | ||
48 | "license_title": null, | 48 | "license_title": null, | ||
49 | "link_orkg": "", | 49 | "link_orkg": "", | ||
50 | "metadata_created": "2024-12-03T09:58:55.470853", | 50 | "metadata_created": "2024-12-03T09:58:55.470853", | ||
n | 51 | "metadata_modified": "2024-12-03T09:58:55.470857", | n | 51 | "metadata_modified": "2024-12-03T09:58:55.808001", |
52 | "name": | 52 | "name": | ||
53 | ta-augmentation-with-denoising-diffusion-for-graph-anomaly-detection", | 53 | ta-augmentation-with-denoising-diffusion-for-graph-anomaly-detection", | ||
54 | "notes": "A critical aspect of Graph Neural Networks (GNNs) is to | 54 | "notes": "A critical aspect of Graph Neural Networks (GNNs) is to | ||
55 | enhance the node representations by aggregating node neighborhood | 55 | enhance the node representations by aggregating node neighborhood | ||
56 | information. However, when detecting anomalies, the representations of | 56 | information. However, when detecting anomalies, the representations of | ||
57 | abnormal nodes are prone to be averaged by normal neighbors, making | 57 | abnormal nodes are prone to be averaged by normal neighbors, making | ||
58 | the learned anomaly representations less distinguishable.", | 58 | the learned anomaly representations less distinguishable.", | ||
n | 59 | "num_resources": 0, | n | 59 | "num_resources": 1, |
60 | "num_tags": 3, | 60 | "num_tags": 3, | ||
61 | "organization": { | 61 | "organization": { | ||
62 | "approval_status": "approved", | 62 | "approval_status": "approved", | ||
63 | "created": "2024-11-25T12:11:38.292601", | 63 | "created": "2024-11-25T12:11:38.292601", | ||
64 | "description": "", | 64 | "description": "", | ||
65 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 65 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
66 | "image_url": "", | 66 | "image_url": "", | ||
67 | "is_organization": true, | 67 | "is_organization": true, | ||
68 | "name": "no-organization", | 68 | "name": "no-organization", | ||
69 | "state": "active", | 69 | "state": "active", | ||
70 | "title": "No Organization", | 70 | "title": "No Organization", | ||
71 | "type": "organization" | 71 | "type": "organization" | ||
72 | }, | 72 | }, | ||
73 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 73 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
74 | "private": false, | 74 | "private": false, | ||
75 | "relationships_as_object": [], | 75 | "relationships_as_object": [], | ||
76 | "relationships_as_subject": [], | 76 | "relationships_as_subject": [], | ||
t | 77 | "resources": [], | t | 77 | "resources": [ |
78 | { | ||||
79 | "cache_last_updated": null, | ||||
80 | "cache_url": null, | ||||
81 | "created": "2024-12-03T10:49:30", | ||||
82 | "data": [ | ||||
83 | "dcterms:title", | ||||
84 | "dcterms:accessRights", | ||||
85 | "dcterms:creator", | ||||
86 | "dcterms:description", | ||||
87 | "dcterms:issued", | ||||
88 | "dcterms:language", | ||||
89 | "dcterms:identifier", | ||||
90 | "dcat:theme", | ||||
91 | "dcterms:type", | ||||
92 | "dcat:keyword", | ||||
93 | "dcat:landingPage", | ||||
94 | "dcterms:hasVersion", | ||||
95 | "dcterms:format", | ||||
96 | "mls:task", | ||||
97 | "datacite:isDescribedBy" | ||||
98 | ], | ||||
99 | "description": "The json representation of the dataset with its | ||||
100 | distributions based on DCAT.", | ||||
101 | "format": "JSON", | ||||
102 | "hash": "", | ||||
103 | "id": "a3f74431-d243-4b6f-81a3-d479ef2b16f9", | ||||
104 | "last_modified": "2024-12-03T09:58:55.800751", | ||||
105 | "metadata_modified": "2024-12-03T09:58:55.810780", | ||||
106 | "mimetype": "application/json", | ||||
107 | "mimetype_inner": null, | ||||
108 | "name": "Original Metadata", | ||||
109 | "package_id": "cb4a2d26-9c99-475a-a9c3-c15065ee498f", | ||||
110 | "position": 0, | ||||
111 | "resource_type": null, | ||||
112 | "size": 1043, | ||||
113 | "state": "active", | ||||
114 | "url": | ||||
115 | resource/a3f74431-d243-4b6f-81a3-d479ef2b16f9/download/metadata.json", | ||||
116 | "url_type": "upload" | ||||
117 | } | ||||
118 | ], | ||||
78 | "services_used_list": "", | 119 | "services_used_list": "", | ||
79 | "state": "active", | 120 | "state": "active", | ||
80 | "tags": [ | 121 | "tags": [ | ||
81 | { | 122 | { | ||
82 | "display_name": "Anomaly Detection", | 123 | "display_name": "Anomaly Detection", | ||
83 | "id": "772b074e-4795-4f11-80b4-362b2f8a0dca", | 124 | "id": "772b074e-4795-4f11-80b4-362b2f8a0dca", | ||
84 | "name": "Anomaly Detection", | 125 | "name": "Anomaly Detection", | ||
85 | "state": "active", | 126 | "state": "active", | ||
86 | "vocabulary_id": null | 127 | "vocabulary_id": null | ||
87 | }, | 128 | }, | ||
88 | { | 129 | { | ||
89 | "display_name": "Counterfactual Data Augmentation", | 130 | "display_name": "Counterfactual Data Augmentation", | ||
90 | "id": "3eb4aa04-24d5-48b3-aa0b-0c02d37a34ae", | 131 | "id": "3eb4aa04-24d5-48b3-aa0b-0c02d37a34ae", | ||
91 | "name": "Counterfactual Data Augmentation", | 132 | "name": "Counterfactual Data Augmentation", | ||
92 | "state": "active", | 133 | "state": "active", | ||
93 | "vocabulary_id": null | 134 | "vocabulary_id": null | ||
94 | }, | 135 | }, | ||
95 | { | 136 | { | ||
96 | "display_name": "Graph Neural Networks", | 137 | "display_name": "Graph Neural Networks", | ||
97 | "id": "8c619694-1a66-4a7d-bcda-bb2d6265d082", | 138 | "id": "8c619694-1a66-4a7d-bcda-bb2d6265d082", | ||
98 | "name": "Graph Neural Networks", | 139 | "name": "Graph Neural Networks", | ||
99 | "state": "active", | 140 | "state": "active", | ||
100 | "vocabulary_id": null | 141 | "vocabulary_id": null | ||
101 | } | 142 | } | ||
102 | ], | 143 | ], | ||
103 | "title": "Counterfactual Data Augmentation with Denoising Diffusion | 144 | "title": "Counterfactual Data Augmentation with Denoising Diffusion | ||
104 | for Graph Anomaly Detection", | 145 | for Graph Anomaly Detection", | ||
105 | "type": "dataset", | 146 | "type": "dataset", | ||
106 | "version": "" | 147 | "version": "" | ||
107 | } | 148 | } |