Changes
On December 2, 2024 at 5:52:16 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in German Credit -
Changed value of field
doi_date_published
to2024-12-02
in German Credit -
Added resource Original Metadata to German Credit
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Zhen Zhang", | 3 | "author": "Zhen Zhang", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [ | 5 | "citation": [ | ||
6 | "https://doi.org/10.48550/arXiv.2404.18134", | 6 | "https://doi.org/10.48550/arXiv.2404.18134", | ||
7 | "https://doi.org/10.48550/arXiv.2406.03012", | 7 | "https://doi.org/10.48550/arXiv.2406.03012", | ||
8 | "https://doi.org/10.48550/arXiv.2311.02757" | 8 | "https://doi.org/10.48550/arXiv.2311.02757" | ||
9 | ], | 9 | ], | ||
10 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 10 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
11 | "defined_in": "https://doi.org/10.48550/arXiv.2404.01356", | 11 | "defined_in": "https://doi.org/10.48550/arXiv.2404.01356", | ||
12 | "doi": "10.57702/kizmvro7", | 12 | "doi": "10.57702/kizmvro7", | ||
n | 13 | "doi_date_published": null, | n | 13 | "doi_date_published": "2024-12-02", |
14 | "doi_publisher": "TIB", | 14 | "doi_publisher": "TIB", | ||
n | 15 | "doi_status": false, | n | 15 | "doi_status": true, |
16 | "domain": "https://service.tib.eu/ldmservice", | 16 | "domain": "https://service.tib.eu/ldmservice", | ||
17 | "groups": [ | 17 | "groups": [ | ||
18 | { | 18 | { | ||
19 | "description": "", | 19 | "description": "", | ||
20 | "display_name": "Bias in Machine Learning", | 20 | "display_name": "Bias in Machine Learning", | ||
21 | "id": "27b2a7aa-2acc-4ab1-862e-f2590bdf39fb", | 21 | "id": "27b2a7aa-2acc-4ab1-862e-f2590bdf39fb", | ||
22 | "image_display_url": "", | 22 | "image_display_url": "", | ||
23 | "name": "bias-in-machine-learning", | 23 | "name": "bias-in-machine-learning", | ||
24 | "title": "Bias in Machine Learning" | 24 | "title": "Bias in Machine Learning" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "description": "", | 27 | "description": "", | ||
28 | "display_name": "Credit", | 28 | "display_name": "Credit", | ||
29 | "id": "92b10418-1123-45e6-ac92-66f58986f64b", | 29 | "id": "92b10418-1123-45e6-ac92-66f58986f64b", | ||
30 | "image_display_url": "", | 30 | "image_display_url": "", | ||
31 | "name": "credit", | 31 | "name": "credit", | ||
32 | "title": "Credit" | 32 | "title": "Credit" | ||
33 | }, | 33 | }, | ||
34 | { | 34 | { | ||
35 | "description": "", | 35 | "description": "", | ||
36 | "display_name": "Credit Risk", | 36 | "display_name": "Credit Risk", | ||
37 | "id": "77249300-0b59-4ef0-8456-512434d69ff5", | 37 | "id": "77249300-0b59-4ef0-8456-512434d69ff5", | ||
38 | "image_display_url": "", | 38 | "image_display_url": "", | ||
39 | "name": "credit-risk", | 39 | "name": "credit-risk", | ||
40 | "title": "Credit Risk" | 40 | "title": "Credit Risk" | ||
41 | }, | 41 | }, | ||
42 | { | 42 | { | ||
43 | "description": "", | 43 | "description": "", | ||
44 | "display_name": "Credit risk assessment", | 44 | "display_name": "Credit risk assessment", | ||
45 | "id": "5fc4cf30-2fe7-45fe-aa21-2e9d3cce7b4d", | 45 | "id": "5fc4cf30-2fe7-45fe-aa21-2e9d3cce7b4d", | ||
46 | "image_display_url": "", | 46 | "image_display_url": "", | ||
47 | "name": "credit-risk-assessment", | 47 | "name": "credit-risk-assessment", | ||
48 | "title": "Credit risk assessment" | 48 | "title": "Credit risk assessment" | ||
49 | } | 49 | } | ||
50 | ], | 50 | ], | ||
51 | "id": "bca05f94-b4a5-40cb-9643-d18f4b03212f", | 51 | "id": "bca05f94-b4a5-40cb-9643-d18f4b03212f", | ||
52 | "isopen": false, | 52 | "isopen": false, | ||
53 | "landing_page": "https://doi.org/10.24432/C5NC77", | 53 | "landing_page": "https://doi.org/10.24432/C5NC77", | ||
54 | "license_title": null, | 54 | "license_title": null, | ||
55 | "link_orkg": "", | 55 | "link_orkg": "", | ||
56 | "metadata_created": "2024-12-02T17:52:14.999928", | 56 | "metadata_created": "2024-12-02T17:52:14.999928", | ||
n | 57 | "metadata_modified": "2024-12-02T17:52:14.999935", | n | 57 | "metadata_modified": "2024-12-02T17:52:15.360565", |
58 | "name": "german-credit", | 58 | "name": "german-credit", | ||
59 | "notes": "Each node is a client in a German bank, while each edge | 59 | "notes": "Each node is a client in a German bank, while each edge | ||
60 | between any two clients represents that they bear similar credit | 60 | between any two clients represents that they bear similar credit | ||
61 | accounts. Here the gender of bank clients is considered as the | 61 | accounts. Here the gender of bank clients is considered as the | ||
62 | sensitive attribute, and the task is to classify the credit risk of | 62 | sensitive attribute, and the task is to classify the credit risk of | ||
63 | the clients as high or low.", | 63 | the clients as high or low.", | ||
n | 64 | "num_resources": 0, | n | 64 | "num_resources": 1, |
65 | "num_tags": 11, | 65 | "num_tags": 11, | ||
66 | "organization": { | 66 | "organization": { | ||
67 | "approval_status": "approved", | 67 | "approval_status": "approved", | ||
68 | "created": "2024-11-25T12:11:38.292601", | 68 | "created": "2024-11-25T12:11:38.292601", | ||
69 | "description": "", | 69 | "description": "", | ||
70 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 70 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
71 | "image_url": "", | 71 | "image_url": "", | ||
72 | "is_organization": true, | 72 | "is_organization": true, | ||
73 | "name": "no-organization", | 73 | "name": "no-organization", | ||
74 | "state": "active", | 74 | "state": "active", | ||
75 | "title": "No Organization", | 75 | "title": "No Organization", | ||
76 | "type": "organization" | 76 | "type": "organization" | ||
77 | }, | 77 | }, | ||
78 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 78 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
79 | "private": false, | 79 | "private": false, | ||
80 | "relationships_as_object": [], | 80 | "relationships_as_object": [], | ||
81 | "relationships_as_subject": [], | 81 | "relationships_as_subject": [], | ||
t | 82 | "resources": [], | t | 82 | "resources": [ |
83 | { | ||||
84 | "cache_last_updated": null, | ||||
85 | "cache_url": null, | ||||
86 | "created": "2024-12-02T18:38:42", | ||||
87 | "data": [ | ||||
88 | "dcterms:title", | ||||
89 | "dcterms:accessRights", | ||||
90 | "dcterms:creator", | ||||
91 | "dcterms:description", | ||||
92 | "dcterms:issued", | ||||
93 | "dcterms:language", | ||||
94 | "dcterms:identifier", | ||||
95 | "dcat:theme", | ||||
96 | "dcterms:type", | ||||
97 | "dcat:keyword", | ||||
98 | "dcat:landingPage", | ||||
99 | "dcterms:hasVersion", | ||||
100 | "dcterms:format", | ||||
101 | "mls:task", | ||||
102 | "datacite:isDescribedBy" | ||||
103 | ], | ||||
104 | "description": "The json representation of the dataset with its | ||||
105 | distributions based on DCAT.", | ||||
106 | "format": "JSON", | ||||
107 | "hash": "", | ||||
108 | "id": "169bcc18-bd89-4904-b770-5e69f045cc43", | ||||
109 | "last_modified": "2024-12-02T17:52:15.352813", | ||||
110 | "metadata_modified": "2024-12-02T17:52:15.363311", | ||||
111 | "mimetype": "application/json", | ||||
112 | "mimetype_inner": null, | ||||
113 | "name": "Original Metadata", | ||||
114 | "package_id": "bca05f94-b4a5-40cb-9643-d18f4b03212f", | ||||
115 | "position": 0, | ||||
116 | "resource_type": null, | ||||
117 | "size": 1162, | ||||
118 | "state": "active", | ||||
119 | "url": | ||||
120 | resource/169bcc18-bd89-4904-b770-5e69f045cc43/download/metadata.json", | ||||
121 | "url_type": "upload" | ||||
122 | } | ||||
123 | ], | ||||
83 | "services_used_list": "", | 124 | "services_used_list": "", | ||
84 | "state": "active", | 125 | "state": "active", | ||
85 | "tags": [ | 126 | "tags": [ | ||
86 | { | 127 | { | ||
87 | "display_name": "Bias in Machine Learning", | 128 | "display_name": "Bias in Machine Learning", | ||
88 | "id": "2551285e-c4c9-42b4-bc96-14c4fdf06817", | 129 | "id": "2551285e-c4c9-42b4-bc96-14c4fdf06817", | ||
89 | "name": "Bias in Machine Learning", | 130 | "name": "Bias in Machine Learning", | ||
90 | "state": "active", | 131 | "state": "active", | ||
91 | "vocabulary_id": null | 132 | "vocabulary_id": null | ||
92 | }, | 133 | }, | ||
93 | { | 134 | { | ||
94 | "display_name": "Binary Classification", | 135 | "display_name": "Binary Classification", | ||
95 | "id": "3703128a-f9dc-495f-a243-83317e120d6e", | 136 | "id": "3703128a-f9dc-495f-a243-83317e120d6e", | ||
96 | "name": "Binary Classification", | 137 | "name": "Binary Classification", | ||
97 | "state": "active", | 138 | "state": "active", | ||
98 | "vocabulary_id": null | 139 | "vocabulary_id": null | ||
99 | }, | 140 | }, | ||
100 | { | 141 | { | ||
101 | "display_name": "Credit", | 142 | "display_name": "Credit", | ||
102 | "id": "9b2ded5a-b60f-4bbc-ab3c-1848ce641fec", | 143 | "id": "9b2ded5a-b60f-4bbc-ab3c-1848ce641fec", | ||
103 | "name": "Credit", | 144 | "name": "Credit", | ||
104 | "state": "active", | 145 | "state": "active", | ||
105 | "vocabulary_id": null | 146 | "vocabulary_id": null | ||
106 | }, | 147 | }, | ||
107 | { | 148 | { | ||
108 | "display_name": "Credit Risk", | 149 | "display_name": "Credit Risk", | ||
109 | "id": "fab2c14b-9715-44b5-b5ae-0411ae2c4470", | 150 | "id": "fab2c14b-9715-44b5-b5ae-0411ae2c4470", | ||
110 | "name": "Credit Risk", | 151 | "name": "Credit Risk", | ||
111 | "state": "active", | 152 | "state": "active", | ||
112 | "vocabulary_id": null | 153 | "vocabulary_id": null | ||
113 | }, | 154 | }, | ||
114 | { | 155 | { | ||
115 | "display_name": "German Credit", | 156 | "display_name": "German Credit", | ||
116 | "id": "30309639-c098-4dcd-aa15-00710850cfb0", | 157 | "id": "30309639-c098-4dcd-aa15-00710850cfb0", | ||
117 | "name": "German Credit", | 158 | "name": "German Credit", | ||
118 | "state": "active", | 159 | "state": "active", | ||
119 | "vocabulary_id": null | 160 | "vocabulary_id": null | ||
120 | }, | 161 | }, | ||
121 | { | 162 | { | ||
122 | "display_name": "Lending", | 163 | "display_name": "Lending", | ||
123 | "id": "ae9468b0-15c3-4d16-9836-f765a718832a", | 164 | "id": "ae9468b0-15c3-4d16-9836-f765a718832a", | ||
124 | "name": "Lending", | 165 | "name": "Lending", | ||
125 | "state": "active", | 166 | "state": "active", | ||
126 | "vocabulary_id": null | 167 | "vocabulary_id": null | ||
127 | }, | 168 | }, | ||
128 | { | 169 | { | ||
129 | "display_name": "Neural Networks", | 170 | "display_name": "Neural Networks", | ||
130 | "id": "b8e60d98-1c66-40d1-b944-74216c2bd378", | 171 | "id": "b8e60d98-1c66-40d1-b944-74216c2bd378", | ||
131 | "name": "Neural Networks", | 172 | "name": "Neural Networks", | ||
132 | "state": "active", | 173 | "state": "active", | ||
133 | "vocabulary_id": null | 174 | "vocabulary_id": null | ||
134 | }, | 175 | }, | ||
135 | { | 176 | { | ||
136 | "display_name": "Numerical Attributes", | 177 | "display_name": "Numerical Attributes", | ||
137 | "id": "17155898-95b1-4b6f-aeec-ad9c157854de", | 178 | "id": "17155898-95b1-4b6f-aeec-ad9c157854de", | ||
138 | "name": "Numerical Attributes", | 179 | "name": "Numerical Attributes", | ||
139 | "state": "active", | 180 | "state": "active", | ||
140 | "vocabulary_id": null | 181 | "vocabulary_id": null | ||
141 | }, | 182 | }, | ||
142 | { | 183 | { | ||
143 | "display_name": "banking", | 184 | "display_name": "banking", | ||
144 | "id": "80a374f4-ef10-4b35-8453-002c7a12914a", | 185 | "id": "80a374f4-ef10-4b35-8453-002c7a12914a", | ||
145 | "name": "banking", | 186 | "name": "banking", | ||
146 | "state": "active", | 187 | "state": "active", | ||
147 | "vocabulary_id": null | 188 | "vocabulary_id": null | ||
148 | }, | 189 | }, | ||
149 | { | 190 | { | ||
150 | "display_name": "credit risk", | 191 | "display_name": "credit risk", | ||
151 | "id": "a3a4e2d3-7bf1-4e96-803e-514212869ab5", | 192 | "id": "a3a4e2d3-7bf1-4e96-803e-514212869ab5", | ||
152 | "name": "credit risk", | 193 | "name": "credit risk", | ||
153 | "state": "active", | 194 | "state": "active", | ||
154 | "vocabulary_id": null | 195 | "vocabulary_id": null | ||
155 | }, | 196 | }, | ||
156 | { | 197 | { | ||
157 | "display_name": "gender", | 198 | "display_name": "gender", | ||
158 | "id": "af90adbe-d62d-4309-ba7b-132696a7db64", | 199 | "id": "af90adbe-d62d-4309-ba7b-132696a7db64", | ||
159 | "name": "gender", | 200 | "name": "gender", | ||
160 | "state": "active", | 201 | "state": "active", | ||
161 | "vocabulary_id": null | 202 | "vocabulary_id": null | ||
162 | } | 203 | } | ||
163 | ], | 204 | ], | ||
164 | "title": "German Credit", | 205 | "title": "German Credit", | ||
165 | "type": "dataset", | 206 | "type": "dataset", | ||
166 | "version": "" | 207 | "version": "" | ||
167 | } | 208 | } |