Changes
On December 16, 2024 at 10:51:13 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in HGL: Hierarchical Geometry Learning for Test-time Adaptation in 3D Point Cloud Segmentation -
Changed value of field
doi_date_published
to2024-12-16
in HGL: Hierarchical Geometry Learning for Test-time Adaptation in 3D Point Cloud Segmentation -
Added resource Original Metadata to HGL: Hierarchical Geometry Learning for Test-time Adaptation in 3D Point Cloud Segmentation
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Tianpei Zou", | 3 | "author": "Tianpei Zou", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2407.12387", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2407.12387", | ||
8 | "doi": "10.57702/irlzamx3", | 8 | "doi": "10.57702/irlzamx3", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-16", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Sanqing Qu", | 15 | "extra_author": "Sanqing Qu", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Zhijun Li", | 19 | "extra_author": "Zhijun Li", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Alois Knoll", | 23 | "extra_author": "Alois Knoll", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Lianghua He", | 27 | "extra_author": "Lianghua He", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | }, | 29 | }, | ||
30 | { | 30 | { | ||
31 | "extra_author": "Guang Chen", | 31 | "extra_author": "Guang Chen", | ||
32 | "orcid": "" | 32 | "orcid": "" | ||
33 | }, | 33 | }, | ||
34 | { | 34 | { | ||
35 | "extra_author": "Changjun Jiang", | 35 | "extra_author": "Changjun Jiang", | ||
36 | "orcid": "" | 36 | "orcid": "" | ||
37 | } | 37 | } | ||
38 | ], | 38 | ], | ||
39 | "groups": [ | 39 | "groups": [ | ||
40 | { | 40 | { | ||
41 | "description": "", | 41 | "description": "", | ||
42 | "display_name": "Point Cloud Segmentation", | 42 | "display_name": "Point Cloud Segmentation", | ||
43 | "id": "addc11b6-af72-47ca-bc3d-69b2f4e15d10", | 43 | "id": "addc11b6-af72-47ca-bc3d-69b2f4e15d10", | ||
44 | "image_display_url": "", | 44 | "image_display_url": "", | ||
45 | "name": "point-cloud-segmentation", | 45 | "name": "point-cloud-segmentation", | ||
46 | "title": "Point Cloud Segmentation" | 46 | "title": "Point Cloud Segmentation" | ||
47 | }, | 47 | }, | ||
48 | { | 48 | { | ||
49 | "description": "", | 49 | "description": "", | ||
50 | "display_name": "Test-Time Adaptation", | 50 | "display_name": "Test-Time Adaptation", | ||
51 | "id": "f14312b4-c25e-41ae-a73e-1552a9b84249", | 51 | "id": "f14312b4-c25e-41ae-a73e-1552a9b84249", | ||
52 | "image_display_url": "", | 52 | "image_display_url": "", | ||
53 | "name": "test-time-adaptation", | 53 | "name": "test-time-adaptation", | ||
54 | "title": "Test-Time Adaptation" | 54 | "title": "Test-Time Adaptation" | ||
55 | } | 55 | } | ||
56 | ], | 56 | ], | ||
57 | "id": "3075cd44-814b-4eeb-b392-68a5b4dba062", | 57 | "id": "3075cd44-814b-4eeb-b392-68a5b4dba062", | ||
58 | "isopen": false, | 58 | "isopen": false, | ||
59 | "landing_page": "https://github.com/tpzou/HGL", | 59 | "landing_page": "https://github.com/tpzou/HGL", | ||
60 | "license_title": null, | 60 | "license_title": null, | ||
61 | "link_orkg": "", | 61 | "link_orkg": "", | ||
62 | "metadata_created": "2024-12-16T22:51:11.864712", | 62 | "metadata_created": "2024-12-16T22:51:11.864712", | ||
n | 63 | "metadata_modified": "2024-12-16T22:51:11.864718", | n | 63 | "metadata_modified": "2024-12-16T22:51:12.489514", |
64 | "name": | 64 | "name": | ||
65 | try-learning-for-test-time-adaptation-in-3d-point-cloud-segmentation", | 65 | try-learning-for-test-time-adaptation-in-3d-point-cloud-segmentation", | ||
66 | "notes": "3D point cloud segmentation has received significant | 66 | "notes": "3D point cloud segmentation has received significant | ||
67 | interest for its growing applications. However, the generalization | 67 | interest for its growing applications. However, the generalization | ||
68 | ability of models suffers in dynamic scenarios due to the distribution | 68 | ability of models suffers in dynamic scenarios due to the distribution | ||
69 | shift between test and training data.", | 69 | shift between test and training data.", | ||
n | 70 | "num_resources": 0, | n | 70 | "num_resources": 1, |
71 | "num_tags": 3, | 71 | "num_tags": 3, | ||
72 | "organization": { | 72 | "organization": { | ||
73 | "approval_status": "approved", | 73 | "approval_status": "approved", | ||
74 | "created": "2024-11-25T12:11:38.292601", | 74 | "created": "2024-11-25T12:11:38.292601", | ||
75 | "description": "", | 75 | "description": "", | ||
76 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 76 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
77 | "image_url": "", | 77 | "image_url": "", | ||
78 | "is_organization": true, | 78 | "is_organization": true, | ||
79 | "name": "no-organization", | 79 | "name": "no-organization", | ||
80 | "state": "active", | 80 | "state": "active", | ||
81 | "title": "No Organization", | 81 | "title": "No Organization", | ||
82 | "type": "organization" | 82 | "type": "organization" | ||
83 | }, | 83 | }, | ||
84 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 84 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
85 | "private": false, | 85 | "private": false, | ||
86 | "relationships_as_object": [], | 86 | "relationships_as_object": [], | ||
87 | "relationships_as_subject": [], | 87 | "relationships_as_subject": [], | ||
t | 88 | "resources": [], | t | 88 | "resources": [ |
89 | { | ||||
90 | "cache_last_updated": null, | ||||
91 | "cache_url": null, | ||||
92 | "created": "2024-12-16T23:37:08", | ||||
93 | "data": [ | ||||
94 | "dcterms:title", | ||||
95 | "dcterms:accessRights", | ||||
96 | "dcterms:creator", | ||||
97 | "dcterms:description", | ||||
98 | "dcterms:issued", | ||||
99 | "dcterms:language", | ||||
100 | "dcterms:identifier", | ||||
101 | "dcat:theme", | ||||
102 | "dcterms:type", | ||||
103 | "dcat:keyword", | ||||
104 | "dcat:landingPage", | ||||
105 | "dcterms:hasVersion", | ||||
106 | "dcterms:format", | ||||
107 | "mls:task", | ||||
108 | "datacite:isDescribedBy" | ||||
109 | ], | ||||
110 | "description": "The json representation of the dataset with its | ||||
111 | distributions based on DCAT.", | ||||
112 | "format": "JSON", | ||||
113 | "hash": "", | ||||
114 | "id": "d481a73c-b250-4fcd-8fe9-183ce661bbbe", | ||||
115 | "last_modified": "2024-12-16T22:51:12.481182", | ||||
116 | "metadata_modified": "2024-12-16T22:51:12.492662", | ||||
117 | "mimetype": "application/json", | ||||
118 | "mimetype_inner": null, | ||||
119 | "name": "Original Metadata", | ||||
120 | "package_id": "3075cd44-814b-4eeb-b392-68a5b4dba062", | ||||
121 | "position": 0, | ||||
122 | "resource_type": null, | ||||
123 | "size": 979, | ||||
124 | "state": "active", | ||||
125 | "url": | ||||
126 | resource/d481a73c-b250-4fcd-8fe9-183ce661bbbe/download/metadata.json", | ||||
127 | "url_type": "upload" | ||||
128 | } | ||||
129 | ], | ||||
89 | "services_used_list": "", | 130 | "services_used_list": "", | ||
90 | "state": "active", | 131 | "state": "active", | ||
91 | "tags": [ | 132 | "tags": [ | ||
92 | { | 133 | { | ||
93 | "display_name": "3D point cloud", | 134 | "display_name": "3D point cloud", | ||
94 | "id": "4a0d0b18-b185-46f5-8434-8be1a98c78c0", | 135 | "id": "4a0d0b18-b185-46f5-8434-8be1a98c78c0", | ||
95 | "name": "3D point cloud", | 136 | "name": "3D point cloud", | ||
96 | "state": "active", | 137 | "state": "active", | ||
97 | "vocabulary_id": null | 138 | "vocabulary_id": null | ||
98 | }, | 139 | }, | ||
99 | { | 140 | { | ||
100 | "display_name": "segmentation", | 141 | "display_name": "segmentation", | ||
101 | "id": "7ce0e509-9f57-44c4-a015-f1ab9872bb44", | 142 | "id": "7ce0e509-9f57-44c4-a015-f1ab9872bb44", | ||
102 | "name": "segmentation", | 143 | "name": "segmentation", | ||
103 | "state": "active", | 144 | "state": "active", | ||
104 | "vocabulary_id": null | 145 | "vocabulary_id": null | ||
105 | }, | 146 | }, | ||
106 | { | 147 | { | ||
107 | "display_name": "test-time adaptation", | 148 | "display_name": "test-time adaptation", | ||
108 | "id": "822fcca0-8851-459f-a8d4-1b308ccf9e34", | 149 | "id": "822fcca0-8851-459f-a8d4-1b308ccf9e34", | ||
109 | "name": "test-time adaptation", | 150 | "name": "test-time adaptation", | ||
110 | "state": "active", | 151 | "state": "active", | ||
111 | "vocabulary_id": null | 152 | "vocabulary_id": null | ||
112 | } | 153 | } | ||
113 | ], | 154 | ], | ||
114 | "title": "HGL: Hierarchical Geometry Learning for Test-time | 155 | "title": "HGL: Hierarchical Geometry Learning for Test-time | ||
115 | Adaptation in 3D Point Cloud Segmentation", | 156 | Adaptation in 3D Point Cloud Segmentation", | ||
116 | "type": "dataset", | 157 | "type": "dataset", | ||
117 | "version": "" | 158 | "version": "" | ||
118 | } | 159 | } |