Changes
On December 2, 2024 at 10:50:42 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in SqueezeSegV3: Spatially-Adaptive Convolution for Efficient Point-Cloud Segmentation -
Changed value of field
doi_date_published
to2024-12-02
in SqueezeSegV3: Spatially-Adaptive Convolution for Efficient Point-Cloud Segmentation -
Added resource Original Metadata to SqueezeSegV3: Spatially-Adaptive Convolution for Efficient Point-Cloud Segmentation
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Chenfeng Xu", | 3 | "author": "Chenfeng Xu", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2004.01803", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2004.01803", | ||
8 | "doi": "10.57702/055z53bg", | 8 | "doi": "10.57702/055z53bg", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-02", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Bichen Wu", | 15 | "extra_author": "Bichen Wu", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Zining Wang", | 19 | "extra_author": "Zining Wang", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Wei Zhan", | 23 | "extra_author": "Wei Zhan", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Peter Vajda", | 27 | "extra_author": "Peter Vajda", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | }, | 29 | }, | ||
30 | { | 30 | { | ||
31 | "extra_author": "Kurt Keutzer", | 31 | "extra_author": "Kurt Keutzer", | ||
32 | "orcid": "" | 32 | "orcid": "" | ||
33 | }, | 33 | }, | ||
34 | { | 34 | { | ||
35 | "extra_author": "Masayoshi Tomizuka", | 35 | "extra_author": "Masayoshi Tomizuka", | ||
36 | "orcid": "" | 36 | "orcid": "" | ||
37 | } | 37 | } | ||
38 | ], | 38 | ], | ||
39 | "groups": [ | 39 | "groups": [ | ||
40 | { | 40 | { | ||
41 | "description": "", | 41 | "description": "", | ||
42 | "display_name": "Point Cloud Segmentation", | 42 | "display_name": "Point Cloud Segmentation", | ||
43 | "id": "addc11b6-af72-47ca-bc3d-69b2f4e15d10", | 43 | "id": "addc11b6-af72-47ca-bc3d-69b2f4e15d10", | ||
44 | "image_display_url": "", | 44 | "image_display_url": "", | ||
45 | "name": "point-cloud-segmentation", | 45 | "name": "point-cloud-segmentation", | ||
46 | "title": "Point Cloud Segmentation" | 46 | "title": "Point Cloud Segmentation" | ||
47 | } | 47 | } | ||
48 | ], | 48 | ], | ||
49 | "id": "ef721ec5-c72c-4516-84d4-09c1c41ef44f", | 49 | "id": "ef721ec5-c72c-4516-84d4-09c1c41ef44f", | ||
50 | "isopen": false, | 50 | "isopen": false, | ||
51 | "landing_page": "https://github.com/chenfengxu714/SqueezeSegV3", | 51 | "landing_page": "https://github.com/chenfengxu714/SqueezeSegV3", | ||
52 | "license_title": null, | 52 | "license_title": null, | ||
53 | "link_orkg": "", | 53 | "link_orkg": "", | ||
54 | "metadata_created": "2024-12-02T22:50:40.701995", | 54 | "metadata_created": "2024-12-02T22:50:40.701995", | ||
n | 55 | "metadata_modified": "2024-12-02T22:50:40.702000", | n | 55 | "metadata_modified": "2024-12-02T22:50:41.304891", |
56 | "name": | 56 | "name": | ||
57 | patially-adaptive-convolution-for-efficient-point-cloud-segmentation", | 57 | patially-adaptive-convolution-for-efficient-point-cloud-segmentation", | ||
58 | "notes": "LiDAR point-cloud segmentation is an important problem for | 58 | "notes": "LiDAR point-cloud segmentation is an important problem for | ||
59 | many applications. For large-scale point cloud segmentation, the de | 59 | many applications. For large-scale point cloud segmentation, the de | ||
60 | facto method is to project a 3D point cloud to get a 2D LiDAR image | 60 | facto method is to project a 3D point cloud to get a 2D LiDAR image | ||
61 | and use convolutions to process it.", | 61 | and use convolutions to process it.", | ||
n | 62 | "num_resources": 0, | n | 62 | "num_resources": 1, |
63 | "num_tags": 4, | 63 | "num_tags": 4, | ||
64 | "organization": { | 64 | "organization": { | ||
65 | "approval_status": "approved", | 65 | "approval_status": "approved", | ||
66 | "created": "2024-11-25T12:11:38.292601", | 66 | "created": "2024-11-25T12:11:38.292601", | ||
67 | "description": "", | 67 | "description": "", | ||
68 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 68 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
69 | "image_url": "", | 69 | "image_url": "", | ||
70 | "is_organization": true, | 70 | "is_organization": true, | ||
71 | "name": "no-organization", | 71 | "name": "no-organization", | ||
72 | "state": "active", | 72 | "state": "active", | ||
73 | "title": "No Organization", | 73 | "title": "No Organization", | ||
74 | "type": "organization" | 74 | "type": "organization" | ||
75 | }, | 75 | }, | ||
76 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 76 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
77 | "private": false, | 77 | "private": false, | ||
78 | "relationships_as_object": [], | 78 | "relationships_as_object": [], | ||
79 | "relationships_as_subject": [], | 79 | "relationships_as_subject": [], | ||
t | 80 | "resources": [], | t | 80 | "resources": [ |
81 | { | ||||
82 | "cache_last_updated": null, | ||||
83 | "cache_url": null, | ||||
84 | "created": "2024-12-02T22:29:38", | ||||
85 | "data": [ | ||||
86 | "dcterms:title", | ||||
87 | "dcterms:accessRights", | ||||
88 | "dcterms:creator", | ||||
89 | "dcterms:description", | ||||
90 | "dcterms:issued", | ||||
91 | "dcterms:language", | ||||
92 | "dcterms:identifier", | ||||
93 | "dcat:theme", | ||||
94 | "dcterms:type", | ||||
95 | "dcat:keyword", | ||||
96 | "dcat:landingPage", | ||||
97 | "dcterms:hasVersion", | ||||
98 | "dcterms:format", | ||||
99 | "mls:task", | ||||
100 | "datacite:isDescribedBy" | ||||
101 | ], | ||||
102 | "description": "The json representation of the dataset with its | ||||
103 | distributions based on DCAT.", | ||||
104 | "format": "JSON", | ||||
105 | "hash": "", | ||||
106 | "id": "f70bac8f-c2dd-4928-a551-85d613c25a91", | ||||
107 | "last_modified": "2024-12-02T22:50:41.297851", | ||||
108 | "metadata_modified": "2024-12-02T22:50:41.307755", | ||||
109 | "mimetype": "application/json", | ||||
110 | "mimetype_inner": null, | ||||
111 | "name": "Original Metadata", | ||||
112 | "package_id": "ef721ec5-c72c-4516-84d4-09c1c41ef44f", | ||||
113 | "position": 0, | ||||
114 | "resource_type": null, | ||||
115 | "size": 1012, | ||||
116 | "state": "active", | ||||
117 | "url": | ||||
118 | resource/f70bac8f-c2dd-4928-a551-85d613c25a91/download/metadata.json", | ||||
119 | "url_type": "upload" | ||||
120 | } | ||||
121 | ], | ||||
81 | "services_used_list": "", | 122 | "services_used_list": "", | ||
82 | "state": "active", | 123 | "state": "active", | ||
83 | "tags": [ | 124 | "tags": [ | ||
84 | { | 125 | { | ||
85 | "display_name": "Convolution", | 126 | "display_name": "Convolution", | ||
86 | "id": "6aed36ae-7117-4105-bc71-b0858a791dc5", | 127 | "id": "6aed36ae-7117-4105-bc71-b0858a791dc5", | ||
87 | "name": "Convolution", | 128 | "name": "Convolution", | ||
88 | "state": "active", | 129 | "state": "active", | ||
89 | "vocabulary_id": null | 130 | "vocabulary_id": null | ||
90 | }, | 131 | }, | ||
91 | { | 132 | { | ||
92 | "display_name": "LiDAR", | 133 | "display_name": "LiDAR", | ||
93 | "id": "d3e5e683-df2e-4a64-84a0-93185f5f806e", | 134 | "id": "d3e5e683-df2e-4a64-84a0-93185f5f806e", | ||
94 | "name": "LiDAR", | 135 | "name": "LiDAR", | ||
95 | "state": "active", | 136 | "state": "active", | ||
96 | "vocabulary_id": null | 137 | "vocabulary_id": null | ||
97 | }, | 138 | }, | ||
98 | { | 139 | { | ||
99 | "display_name": "Point Cloud", | 140 | "display_name": "Point Cloud", | ||
100 | "id": "23509753-62ca-44b6-adcc-aa97e99d8cee", | 141 | "id": "23509753-62ca-44b6-adcc-aa97e99d8cee", | ||
101 | "name": "Point Cloud", | 142 | "name": "Point Cloud", | ||
102 | "state": "active", | 143 | "state": "active", | ||
103 | "vocabulary_id": null | 144 | "vocabulary_id": null | ||
104 | }, | 145 | }, | ||
105 | { | 146 | { | ||
106 | "display_name": "Segmentation", | 147 | "display_name": "Segmentation", | ||
107 | "id": "afba543e-f91f-4800-834e-77535c9e8dac", | 148 | "id": "afba543e-f91f-4800-834e-77535c9e8dac", | ||
108 | "name": "Segmentation", | 149 | "name": "Segmentation", | ||
109 | "state": "active", | 150 | "state": "active", | ||
110 | "vocabulary_id": null | 151 | "vocabulary_id": null | ||
111 | } | 152 | } | ||
112 | ], | 153 | ], | ||
113 | "title": "SqueezeSegV3: Spatially-Adaptive Convolution for Efficient | 154 | "title": "SqueezeSegV3: Spatially-Adaptive Convolution for Efficient | ||
114 | Point-Cloud Segmentation", | 155 | Point-Cloud Segmentation", | ||
115 | "type": "dataset", | 156 | "type": "dataset", | ||
116 | "version": "" | 157 | "version": "" | ||
117 | } | 158 | } |