Changes
On December 16, 2024 at 8:19:58 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Tensor and Matrix Low-Rank Value-Function Approximation in Reinforcement Learning -
Changed value of field
doi_date_published
to2024-12-16
in Tensor and Matrix Low-Rank Value-Function Approximation in Reinforcement Learning -
Added resource Original Metadata to Tensor and Matrix Low-Rank Value-Function Approximation in Reinforcement Learning
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Sergio Rozada", | 3 | "author": "Sergio Rozada", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2201.09736", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2201.09736", | ||
8 | "doi": "10.57702/rhr9lbg1", | 8 | "doi": "10.57702/rhr9lbg1", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-16", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Santiago Paternain", | 15 | "extra_author": "Santiago Paternain", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Antonio G. Marques", | 19 | "extra_author": "Antonio G. Marques", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | } | 21 | } | ||
22 | ], | 22 | ], | ||
23 | "groups": [ | 23 | "groups": [ | ||
24 | { | 24 | { | ||
25 | "description": "", | 25 | "description": "", | ||
26 | "display_name": "Reinforcement Learning", | 26 | "display_name": "Reinforcement Learning", | ||
27 | "id": "5f9e20df-0af0-4b7e-9637-e244d4a99379", | 27 | "id": "5f9e20df-0af0-4b7e-9637-e244d4a99379", | ||
28 | "image_display_url": "", | 28 | "image_display_url": "", | ||
29 | "name": "reinforcement-learning", | 29 | "name": "reinforcement-learning", | ||
30 | "title": "Reinforcement Learning" | 30 | "title": "Reinforcement Learning" | ||
31 | } | 31 | } | ||
32 | ], | 32 | ], | ||
33 | "id": "a3f2f28a-6d7c-40c5-8872-8b5b7eec7c7e", | 33 | "id": "a3f2f28a-6d7c-40c5-8872-8b5b7eec7c7e", | ||
34 | "isopen": false, | 34 | "isopen": false, | ||
35 | "landing_page": "", | 35 | "landing_page": "", | ||
36 | "license_title": null, | 36 | "license_title": null, | ||
37 | "link_orkg": "", | 37 | "link_orkg": "", | ||
38 | "metadata_created": "2024-12-16T20:19:57.431913", | 38 | "metadata_created": "2024-12-16T20:19:57.431913", | ||
n | 39 | "metadata_modified": "2024-12-16T20:19:57.431918", | n | 39 | "metadata_modified": "2024-12-16T20:19:57.804718", |
40 | "name": | 40 | "name": | ||
41 | trix-low-rank-value-function-approximation-in-reinforcement-learning", | 41 | trix-low-rank-value-function-approximation-in-reinforcement-learning", | ||
42 | "notes": "Value-function (VF) approximation is a central problem in | 42 | "notes": "Value-function (VF) approximation is a central problem in | ||
43 | Reinforcement Learning (RL). Classical non-parametric VF estimation | 43 | Reinforcement Learning (RL). Classical non-parametric VF estimation | ||
44 | suffers from the curse of dimensionality. As a result, parsimonious | 44 | suffers from the curse of dimensionality. As a result, parsimonious | ||
45 | parametric models have been adopted to approximate VFs in | 45 | parametric models have been adopted to approximate VFs in | ||
46 | high-dimensional spaces, with most efforts being focused on linear and | 46 | high-dimensional spaces, with most efforts being focused on linear and | ||
47 | neural-network-based approaches.", | 47 | neural-network-based approaches.", | ||
n | 48 | "num_resources": 0, | n | 48 | "num_resources": 1, |
49 | "num_tags": 5, | 49 | "num_tags": 5, | ||
50 | "organization": { | 50 | "organization": { | ||
51 | "approval_status": "approved", | 51 | "approval_status": "approved", | ||
52 | "created": "2024-11-25T12:11:38.292601", | 52 | "created": "2024-11-25T12:11:38.292601", | ||
53 | "description": "", | 53 | "description": "", | ||
54 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 54 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
55 | "image_url": "", | 55 | "image_url": "", | ||
56 | "is_organization": true, | 56 | "is_organization": true, | ||
57 | "name": "no-organization", | 57 | "name": "no-organization", | ||
58 | "state": "active", | 58 | "state": "active", | ||
59 | "title": "No Organization", | 59 | "title": "No Organization", | ||
60 | "type": "organization" | 60 | "type": "organization" | ||
61 | }, | 61 | }, | ||
62 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 62 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
63 | "private": false, | 63 | "private": false, | ||
64 | "relationships_as_object": [], | 64 | "relationships_as_object": [], | ||
65 | "relationships_as_subject": [], | 65 | "relationships_as_subject": [], | ||
t | 66 | "resources": [], | t | 66 | "resources": [ |
67 | { | ||||
68 | "cache_last_updated": null, | ||||
69 | "cache_url": null, | ||||
70 | "created": "2024-12-16T18:25:45", | ||||
71 | "data": [ | ||||
72 | "dcterms:title", | ||||
73 | "dcterms:accessRights", | ||||
74 | "dcterms:creator", | ||||
75 | "dcterms:description", | ||||
76 | "dcterms:issued", | ||||
77 | "dcterms:language", | ||||
78 | "dcterms:identifier", | ||||
79 | "dcat:theme", | ||||
80 | "dcterms:type", | ||||
81 | "dcat:keyword", | ||||
82 | "dcat:landingPage", | ||||
83 | "dcterms:hasVersion", | ||||
84 | "dcterms:format", | ||||
85 | "mls:task", | ||||
86 | "datacite:isDescribedBy" | ||||
87 | ], | ||||
88 | "description": "The json representation of the dataset with its | ||||
89 | distributions based on DCAT.", | ||||
90 | "format": "JSON", | ||||
91 | "hash": "", | ||||
92 | "id": "540eb9ca-8b4b-433a-b320-a3930aa91e00", | ||||
93 | "last_modified": "2024-12-16T20:19:57.797024", | ||||
94 | "metadata_modified": "2024-12-16T20:19:57.807631", | ||||
95 | "mimetype": "application/json", | ||||
96 | "mimetype_inner": null, | ||||
97 | "name": "Original Metadata", | ||||
98 | "package_id": "a3f2f28a-6d7c-40c5-8872-8b5b7eec7c7e", | ||||
99 | "position": 0, | ||||
100 | "resource_type": null, | ||||
101 | "size": 1103, | ||||
102 | "state": "active", | ||||
103 | "url": | ||||
104 | resource/540eb9ca-8b4b-433a-b320-a3930aa91e00/download/metadata.json", | ||||
105 | "url_type": "upload" | ||||
106 | } | ||||
107 | ], | ||||
67 | "services_used_list": "", | 108 | "services_used_list": "", | ||
68 | "state": "active", | 109 | "state": "active", | ||
69 | "tags": [ | 110 | "tags": [ | ||
70 | { | 111 | { | ||
71 | "display_name": "Low-rank Approximation", | 112 | "display_name": "Low-rank Approximation", | ||
72 | "id": "709a624e-fa02-4862-a46a-00e53a138cec", | 113 | "id": "709a624e-fa02-4862-a46a-00e53a138cec", | ||
73 | "name": "Low-rank Approximation", | 114 | "name": "Low-rank Approximation", | ||
74 | "state": "active", | 115 | "state": "active", | ||
75 | "vocabulary_id": null | 116 | "vocabulary_id": null | ||
76 | }, | 117 | }, | ||
77 | { | 118 | { | ||
78 | "display_name": "Q-learning", | 119 | "display_name": "Q-learning", | ||
79 | "id": "63706538-edd7-4e37-86ee-55b40004fad0", | 120 | "id": "63706538-edd7-4e37-86ee-55b40004fad0", | ||
80 | "name": "Q-learning", | 121 | "name": "Q-learning", | ||
81 | "state": "active", | 122 | "state": "active", | ||
82 | "vocabulary_id": null | 123 | "vocabulary_id": null | ||
83 | }, | 124 | }, | ||
84 | { | 125 | { | ||
85 | "display_name": "Reinforcement Learning", | 126 | "display_name": "Reinforcement Learning", | ||
86 | "id": "0bd14238-9c5d-4905-8165-c7e5a0c0884c", | 127 | "id": "0bd14238-9c5d-4905-8165-c7e5a0c0884c", | ||
87 | "name": "Reinforcement Learning", | 128 | "name": "Reinforcement Learning", | ||
88 | "state": "active", | 129 | "state": "active", | ||
89 | "vocabulary_id": null | 130 | "vocabulary_id": null | ||
90 | }, | 131 | }, | ||
91 | { | 132 | { | ||
92 | "display_name": "Tensors", | 133 | "display_name": "Tensors", | ||
93 | "id": "c29bc643-0bbb-47d1-95f1-b23efbd63861", | 134 | "id": "c29bc643-0bbb-47d1-95f1-b23efbd63861", | ||
94 | "name": "Tensors", | 135 | "name": "Tensors", | ||
95 | "state": "active", | 136 | "state": "active", | ||
96 | "vocabulary_id": null | 137 | "vocabulary_id": null | ||
97 | }, | 138 | }, | ||
98 | { | 139 | { | ||
99 | "display_name": "Value Function", | 140 | "display_name": "Value Function", | ||
100 | "id": "8bcb81e5-f55f-4916-b071-cea7b243badb", | 141 | "id": "8bcb81e5-f55f-4916-b071-cea7b243badb", | ||
101 | "name": "Value Function", | 142 | "name": "Value Function", | ||
102 | "state": "active", | 143 | "state": "active", | ||
103 | "vocabulary_id": null | 144 | "vocabulary_id": null | ||
104 | } | 145 | } | ||
105 | ], | 146 | ], | ||
106 | "title": "Tensor and Matrix Low-Rank Value-Function Approximation in | 147 | "title": "Tensor and Matrix Low-Rank Value-Function Approximation in | ||
107 | Reinforcement Learning", | 148 | Reinforcement Learning", | ||
108 | "type": "dataset", | 149 | "type": "dataset", | ||
109 | "version": "" | 150 | "version": "" | ||
110 | } | 151 | } |