Changes
On January 3, 2025 at 12:43:09 AM UTC, admin:
-
Changed value of field
doi_date_published
to2025-01-03
in Concurrent Learning of Policy and Unknown Safety Constraints in Reinforcement Learning -
Changed value of field
doi_status
toTrue
in Concurrent Learning of Policy and Unknown Safety Constraints in Reinforcement Learning -
Added resource Original Metadata to Concurrent Learning of Policy and Unknown Safety Constraints in Reinforcement Learning
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Lunet Yifru", | 3 | "author": "Lunet Yifru", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2402.15893", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2402.15893", | ||
8 | "doi": "10.57702/zdc4ivpb", | 8 | "doi": "10.57702/zdc4ivpb", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2025-01-03", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Ali Baheri", | 15 | "extra_author": "Ali Baheri", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | } | 17 | } | ||
18 | ], | 18 | ], | ||
19 | "groups": [ | 19 | "groups": [ | ||
20 | { | 20 | { | ||
21 | "description": "", | 21 | "description": "", | ||
22 | "display_name": "Case Studies", | 22 | "display_name": "Case Studies", | ||
23 | "id": "ebd319b7-74e3-4f4b-8945-7996caecb5d5", | 23 | "id": "ebd319b7-74e3-4f4b-8945-7996caecb5d5", | ||
24 | "image_display_url": "", | 24 | "image_display_url": "", | ||
25 | "name": "case-studies", | 25 | "name": "case-studies", | ||
26 | "title": "Case Studies" | 26 | "title": "Case Studies" | ||
27 | }, | 27 | }, | ||
28 | { | 28 | { | ||
29 | "description": "", | 29 | "description": "", | ||
30 | "display_name": "Safe Reinforcement Learning", | 30 | "display_name": "Safe Reinforcement Learning", | ||
31 | "id": "77b372fa-8b34-46a8-a9de-83a13539d6ce", | 31 | "id": "77b372fa-8b34-46a8-a9de-83a13539d6ce", | ||
32 | "image_display_url": "", | 32 | "image_display_url": "", | ||
33 | "name": "safe-reinforcement-learning", | 33 | "name": "safe-reinforcement-learning", | ||
34 | "title": "Safe Reinforcement Learning" | 34 | "title": "Safe Reinforcement Learning" | ||
35 | }, | 35 | }, | ||
36 | { | 36 | { | ||
37 | "description": "", | 37 | "description": "", | ||
38 | "display_name": "Temporal Logic", | 38 | "display_name": "Temporal Logic", | ||
39 | "id": "11c012c1-1258-4dd7-8082-9f4e2babb46c", | 39 | "id": "11c012c1-1258-4dd7-8082-9f4e2babb46c", | ||
40 | "image_display_url": "", | 40 | "image_display_url": "", | ||
41 | "name": "temporal-logic", | 41 | "name": "temporal-logic", | ||
42 | "title": "Temporal Logic" | 42 | "title": "Temporal Logic" | ||
43 | } | 43 | } | ||
44 | ], | 44 | ], | ||
45 | "id": "daf4e31b-32e1-4727-84b4-59db9b74de96", | 45 | "id": "daf4e31b-32e1-4727-84b4-59db9b74de96", | ||
46 | "isopen": false, | 46 | "isopen": false, | ||
47 | "landing_page": "", | 47 | "landing_page": "", | ||
48 | "license_title": null, | 48 | "license_title": null, | ||
49 | "link_orkg": "", | 49 | "link_orkg": "", | ||
50 | "metadata_created": "2025-01-03T00:43:08.187259", | 50 | "metadata_created": "2025-01-03T00:43:08.187259", | ||
n | 51 | "metadata_modified": "2025-01-03T00:43:08.187266", | n | 51 | "metadata_modified": "2025-01-03T00:43:08.727766", |
52 | "name": | 52 | "name": | ||
53 | g-of-policy-and-unknown-safety-constraints-in-reinforcement-learning", | 53 | g-of-policy-and-unknown-safety-constraints-in-reinforcement-learning", | ||
54 | "notes": "The dataset used in this paper is a comprehensive case | 54 | "notes": "The dataset used in this paper is a comprehensive case | ||
55 | study dataset, including Safe Navigation-Circle, Safe Navigation-Goal, | 55 | study dataset, including Safe Navigation-Circle, Safe Navigation-Goal, | ||
56 | and Safe Velocity-Half Cheetah environments.", | 56 | and Safe Velocity-Half Cheetah environments.", | ||
n | 57 | "num_resources": 0, | n | 57 | "num_resources": 1, |
58 | "num_tags": 5, | 58 | "num_tags": 5, | ||
59 | "organization": { | 59 | "organization": { | ||
60 | "approval_status": "approved", | 60 | "approval_status": "approved", | ||
61 | "created": "2024-11-25T12:11:38.292601", | 61 | "created": "2024-11-25T12:11:38.292601", | ||
62 | "description": "", | 62 | "description": "", | ||
63 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 63 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
64 | "image_url": "", | 64 | "image_url": "", | ||
65 | "is_organization": true, | 65 | "is_organization": true, | ||
66 | "name": "no-organization", | 66 | "name": "no-organization", | ||
67 | "state": "active", | 67 | "state": "active", | ||
68 | "title": "No Organization", | 68 | "title": "No Organization", | ||
69 | "type": "organization" | 69 | "type": "organization" | ||
70 | }, | 70 | }, | ||
71 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 71 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
72 | "private": false, | 72 | "private": false, | ||
73 | "relationships_as_object": [], | 73 | "relationships_as_object": [], | ||
74 | "relationships_as_subject": [], | 74 | "relationships_as_subject": [], | ||
t | 75 | "resources": [], | t | 75 | "resources": [ |
76 | { | ||||
77 | "cache_last_updated": null, | ||||
78 | "cache_url": null, | ||||
79 | "created": "2025-01-03T00:16:34", | ||||
80 | "data": [ | ||||
81 | "dcterms:title", | ||||
82 | "dcterms:accessRights", | ||||
83 | "dcterms:creator", | ||||
84 | "dcterms:description", | ||||
85 | "dcterms:issued", | ||||
86 | "dcterms:language", | ||||
87 | "dcterms:identifier", | ||||
88 | "dcat:theme", | ||||
89 | "dcterms:type", | ||||
90 | "dcat:keyword", | ||||
91 | "dcat:landingPage", | ||||
92 | "dcterms:hasVersion", | ||||
93 | "dcterms:format", | ||||
94 | "mls:task", | ||||
95 | "datacite:isDescribedBy" | ||||
96 | ], | ||||
97 | "description": "The json representation of the dataset with its | ||||
98 | distributions based on DCAT.", | ||||
99 | "format": "JSON", | ||||
100 | "hash": "", | ||||
101 | "id": "2a50217a-3338-437c-860d-c4f053f5ba8f", | ||||
102 | "last_modified": "2025-01-03T00:43:08.719682", | ||||
103 | "metadata_modified": "2025-01-03T00:43:08.730575", | ||||
104 | "mimetype": "application/json", | ||||
105 | "mimetype_inner": null, | ||||
106 | "name": "Original Metadata", | ||||
107 | "package_id": "daf4e31b-32e1-4727-84b4-59db9b74de96", | ||||
108 | "position": 0, | ||||
109 | "resource_type": null, | ||||
110 | "size": 861, | ||||
111 | "state": "active", | ||||
112 | "url": | ||||
113 | resource/2a50217a-3338-437c-860d-c4f053f5ba8f/download/metadata.json", | ||||
114 | "url_type": "upload" | ||||
115 | } | ||||
116 | ], | ||||
76 | "services_used_list": "", | 117 | "services_used_list": "", | ||
77 | "state": "active", | 118 | "state": "active", | ||
78 | "tags": [ | 119 | "tags": [ | ||
79 | { | 120 | { | ||
80 | "display_name": "Case Studies", | 121 | "display_name": "Case Studies", | ||
81 | "id": "b5633849-cc37-47db-818f-92f04996475b", | 122 | "id": "b5633849-cc37-47db-818f-92f04996475b", | ||
82 | "name": "Case Studies", | 123 | "name": "Case Studies", | ||
83 | "state": "active", | 124 | "state": "active", | ||
84 | "vocabulary_id": null | 125 | "vocabulary_id": null | ||
85 | }, | 126 | }, | ||
86 | { | 127 | { | ||
87 | "display_name": "STL", | 128 | "display_name": "STL", | ||
88 | "id": "74aa303b-32e7-4f0f-b256-ad2096e67dde", | 129 | "id": "74aa303b-32e7-4f0f-b256-ad2096e67dde", | ||
89 | "name": "STL", | 130 | "name": "STL", | ||
90 | "state": "active", | 131 | "state": "active", | ||
91 | "vocabulary_id": null | 132 | "vocabulary_id": null | ||
92 | }, | 133 | }, | ||
93 | { | 134 | { | ||
94 | "display_name": "Safe RL", | 135 | "display_name": "Safe RL", | ||
95 | "id": "0436dbdd-4f88-441a-b055-e41f95d4604f", | 136 | "id": "0436dbdd-4f88-441a-b055-e41f95d4604f", | ||
96 | "name": "Safe RL", | 137 | "name": "Safe RL", | ||
97 | "state": "active", | 138 | "state": "active", | ||
98 | "vocabulary_id": null | 139 | "vocabulary_id": null | ||
99 | }, | 140 | }, | ||
100 | { | 141 | { | ||
101 | "display_name": "Temporal Logic", | 142 | "display_name": "Temporal Logic", | ||
102 | "id": "e620f986-dafc-4efa-a21c-42ea5ec171fe", | 143 | "id": "e620f986-dafc-4efa-a21c-42ea5ec171fe", | ||
103 | "name": "Temporal Logic", | 144 | "name": "Temporal Logic", | ||
104 | "state": "active", | 145 | "state": "active", | ||
105 | "vocabulary_id": null | 146 | "vocabulary_id": null | ||
106 | }, | 147 | }, | ||
107 | { | 148 | { | ||
108 | "display_name": "pSTL", | 149 | "display_name": "pSTL", | ||
109 | "id": "8134ddb1-ced1-4edb-97fa-21c19ea3363f", | 150 | "id": "8134ddb1-ced1-4edb-97fa-21c19ea3363f", | ||
110 | "name": "pSTL", | 151 | "name": "pSTL", | ||
111 | "state": "active", | 152 | "state": "active", | ||
112 | "vocabulary_id": null | 153 | "vocabulary_id": null | ||
113 | } | 154 | } | ||
114 | ], | 155 | ], | ||
115 | "title": "Concurrent Learning of Policy and Unknown Safety | 156 | "title": "Concurrent Learning of Policy and Unknown Safety | ||
116 | Constraints in Reinforcement Learning", | 157 | Constraints in Reinforcement Learning", | ||
117 | "type": "dataset", | 158 | "type": "dataset", | ||
118 | "version": "" | 159 | "version": "" | ||
119 | } | 160 | } |