Changes
On December 3, 2024 at 10:53:33 AM UTC, admin:
-
Changed title to QM9 Dataset (previously QM9 dataset)
-
Set author of QM9 Dataset to Yogesh Verma (previously Ramakrishnan et al.)
-
Updated description of QM9 Dataset from
The dataset used in this paper is a collection of chemical compounds, with each compound represented by a set of features extracted using the Chemistry Development Kit (CDK). The dataset is used to demonstrate the effectiveness of the Deep Archetypal Analysis (DAA) model in learning meaningful representations of chemical space.
toThe dataset is used for testing the proposed TopNets architecture on molecular property prediction tasks.
-
Removed the following tags from QM9 Dataset
- Molecular Dynamics
- organic molecules
- chemical space
- Chemistry
- quantum mechanics
- Quantum Chemistry
- Molecular Graphs
- chemical compounds
- Fuel Design
- Materials Science
- atomic positions
- QM9
- Machine Learning
- small molecules
- machine learning
- Graph Neural Networks
- Molecular Property Prediction
- molecular characteristics
-
Added the following tags to QM9 Dataset
-
Changed value of field
defined_in
tohttps://doi.org/10.48550/arXiv.1909.11459
in QM9 Dataset -
Changed value of field
citation
to['https://doi.org/10.48550/arXiv.2406.03164']
in QM9 Dataset -
Changed value of field
landing_page
tohttps://doi.org/10.1038/s41467-014-0253-4
in QM9 Dataset -
Deleted resource Original Metadata from QM9 Dataset
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
n | 3 | "author": "Ramakrishnan et al.", | n | 3 | "author": "Yogesh Verma", |
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [ | 5 | "citation": [ | ||
n | 6 | "https://doi.org/10.48550/arXiv.2106.09575", | n | ||
7 | "https://doi.org/10.1088/2632-2153/ab9c3e", | ||||
8 | "https://doi.org/10.48550/arXiv.2007.03513", | 6 | "https://doi.org/10.48550/arXiv.2406.03164" | ||
9 | "https://doi.org/10.48550/arXiv.2402.14017", | ||||
10 | "https://doi.org/10.48550/arXiv.2002.00815", | ||||
11 | "https://doi.org/10.1002/aic.17971", | ||||
12 | "https://doi.org/10.48550/arXiv.2011.14115" | ||||
13 | ], | 7 | ], | ||
14 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 8 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
n | 15 | "defined_in": "https://doi.org/10.48550/arXiv.1906.00957", | n | 9 | "defined_in": "https://doi.org/10.48550/arXiv.1909.11459", |
16 | "doi": "10.57702/xhp58yns", | 10 | "doi": "10.57702/xhp58yns", | ||
17 | "doi_date_published": "2024-11-25", | 11 | "doi_date_published": "2024-11-25", | ||
18 | "doi_publisher": "TIB", | 12 | "doi_publisher": "TIB", | ||
19 | "doi_status": true, | 13 | "doi_status": true, | ||
20 | "domain": "https://service.tib.eu/ldmservice", | 14 | "domain": "https://service.tib.eu/ldmservice", | ||
n | 21 | "groups": [ | n | 15 | "extra_authors": [ |
22 | { | 16 | { | ||
n | 23 | "description": "", | n | 17 | "extra_author": "Markus Heinonen", |
24 | "display_name": "Chemical Properties", | 18 | "orcid": "" | ||
25 | "id": "88383251-0a1e-46e6-b5d9-14a652e43784", | ||||
26 | "image_display_url": "", | ||||
27 | "name": "chemical-properties", | ||||
28 | "title": "Chemical Properties" | ||||
29 | }, | 19 | }, | ||
30 | { | 20 | { | ||
n | 31 | "description": "", | n | 21 | "extra_author": "Vikas Garg", |
32 | "display_name": "Chemical Space", | 22 | "orcid": "" | ||
33 | "id": "7bd4fa55-ffe7-4a88-9cf3-56280d8dc446", | ||||
34 | "image_display_url": "", | ||||
35 | "name": "chemical-space", | ||||
36 | "title": "Chemical Space" | ||||
37 | }, | 23 | } | ||
38 | { | 24 | ], | ||
39 | "description": "", | 25 | "groups": [ | ||
40 | "display_name": "Chemistry", | ||||
41 | "id": "c0f36b78-cd17-4792-8301-60807bc5a9ac", | ||||
42 | "image_display_url": "", | ||||
43 | "name": "chemistry", | ||||
44 | "title": "Chemistry" | ||||
45 | }, | ||||
46 | { | ||||
47 | "description": "", | ||||
48 | "display_name": "Fuel Design", | ||||
49 | "id": "a8430c9f-77d1-4b16-b49f-1c5ec292fd28", | ||||
50 | "image_display_url": "", | ||||
51 | "name": "fuel-design", | ||||
52 | "title": "Fuel Design" | ||||
53 | }, | ||||
54 | { | ||||
55 | "description": "", | ||||
56 | "display_name": "Machine Learning", | ||||
57 | "id": "1d8623c9-adbd-4f91-be1e-53847c4ac32a", | ||||
58 | "image_display_url": "", | ||||
59 | "name": "machine-learning", | ||||
60 | "title": "Machine Learning" | ||||
61 | }, | ||||
62 | { | ||||
63 | "description": "", | ||||
64 | "display_name": "Materials Science", | ||||
65 | "id": "4cd332f8-2491-4b21-a705-494ae90dd95c", | ||||
66 | "image_display_url": "", | ||||
67 | "name": "materials-science", | ||||
68 | "title": "Materials Science" | ||||
69 | }, | ||||
70 | { | ||||
71 | "description": "", | ||||
72 | "display_name": "Molecular Chemistry", | ||||
73 | "id": "d4a4a323-8255-4972-ad55-94eb046ab4f3", | ||||
74 | "image_display_url": "", | ||||
75 | "name": "molecular-chemistry", | ||||
76 | "title": "Molecular Chemistry" | ||||
77 | }, | ||||
78 | { | ||||
79 | "description": "", | ||||
80 | "display_name": "Molecular Dynamics", | ||||
81 | "id": "f65a2f63-8ebc-45ae-80f0-3e132b50f26b", | ||||
82 | "image_display_url": "", | ||||
83 | "name": "molecular-dynamics", | ||||
84 | "title": "Molecular Dynamics" | ||||
85 | }, | ||||
86 | { | ||||
87 | "description": "", | ||||
88 | "display_name": "Molecular Modeling", | ||||
89 | "id": "f41949b2-e5c8-4ce4-a39f-fe69921e1cde", | ||||
90 | "image_display_url": "", | ||||
91 | "name": "molecular-modeling", | ||||
92 | "title": "Molecular Modeling" | ||||
93 | }, | ||||
94 | { | 26 | { | ||
95 | "description": "", | 27 | "description": "", | ||
96 | "display_name": "Molecular Properties", | 28 | "display_name": "Molecular Properties", | ||
97 | "id": "e8683a01-66f3-40be-aa05-9d5bcfe979d4", | 29 | "id": "e8683a01-66f3-40be-aa05-9d5bcfe979d4", | ||
98 | "image_display_url": "", | 30 | "image_display_url": "", | ||
99 | "name": "molecular-properties", | 31 | "name": "molecular-properties", | ||
100 | "title": "Molecular Properties" | 32 | "title": "Molecular Properties" | ||
101 | }, | 33 | }, | ||
102 | { | 34 | { | ||
103 | "description": "", | 35 | "description": "", | ||
n | 104 | "display_name": "Quantum Chemistry", | n | 36 | "display_name": "Molecular Property Prediction", |
105 | "id": "fd04895f-f184-4e0c-b219-0995398b8904", | 37 | "id": "2e54f418-a4b6-41fd-9781-f79f3a108fb7", | ||
106 | "image_display_url": "", | 38 | "image_display_url": "", | ||
n | 107 | "name": "quantum-chemistry", | n | 39 | "name": "molecular-property-prediction", |
108 | "title": "Quantum Chemistry" | 40 | "title": "Molecular Property Prediction" | ||
109 | }, | ||||
110 | { | ||||
111 | "description": "", | ||||
112 | "display_name": "Quantum Mechanics", | ||||
113 | "id": "46463471-e3c1-4e7a-b5a6-ed2ec8277a4f", | ||||
114 | "image_display_url": "", | ||||
115 | "name": "quantum-mechanics", | ||||
116 | "title": "Quantum Mechanics" | ||||
117 | } | 41 | } | ||
118 | ], | 42 | ], | ||
119 | "id": "64503b2d-3cbb-4272-b5e4-e495b5f08bf0", | 43 | "id": "64503b2d-3cbb-4272-b5e4-e495b5f08bf0", | ||
120 | "isopen": false, | 44 | "isopen": false, | ||
n | 121 | "landing_page": "https://doi.org/10.1038/sdata.2014.22", | n | 45 | "landing_page": "https://doi.org/10.1038/s41467-014-0253-4", |
122 | "license_title": null, | 46 | "license_title": null, | ||
123 | "link_orkg": "", | 47 | "link_orkg": "", | ||
124 | "metadata_created": "2024-11-25T14:44:41.390838", | 48 | "metadata_created": "2024-11-25T14:44:41.390838", | ||
n | 125 | "metadata_modified": "2024-12-02T22:01:53.751520", | n | 49 | "metadata_modified": "2024-12-03T10:53:32.669798", |
126 | "name": "qm9-dataset", | 50 | "name": "qm9-dataset", | ||
n | 127 | "notes": "The dataset used in this paper is a collection of chemical | n | 51 | "notes": "The dataset is used for testing the proposed TopNets |
128 | compounds, with each compound represented by a set of features | 52 | architecture on molecular property prediction tasks.", | ||
129 | extracted using the Chemistry Development Kit (CDK). The dataset is | ||||
130 | used to demonstrate the effectiveness of the Deep Archetypal Analysis | ||||
131 | (DAA) model in learning meaningful representations of chemical | ||||
132 | space.", | ||||
133 | "num_resources": 1, | 53 | "num_resources": 0, | ||
134 | "num_tags": 20, | 54 | "num_tags": 4, | ||
135 | "organization": { | 55 | "organization": { | ||
136 | "approval_status": "approved", | 56 | "approval_status": "approved", | ||
137 | "created": "2024-11-25T12:11:38.292601", | 57 | "created": "2024-11-25T12:11:38.292601", | ||
138 | "description": "", | 58 | "description": "", | ||
139 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 59 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
140 | "image_url": "", | 60 | "image_url": "", | ||
141 | "is_organization": true, | 61 | "is_organization": true, | ||
142 | "name": "no-organization", | 62 | "name": "no-organization", | ||
143 | "state": "active", | 63 | "state": "active", | ||
144 | "title": "No Organization", | 64 | "title": "No Organization", | ||
145 | "type": "organization" | 65 | "type": "organization" | ||
146 | }, | 66 | }, | ||
147 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 67 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
148 | "private": false, | 68 | "private": false, | ||
149 | "relationships_as_object": [], | 69 | "relationships_as_object": [], | ||
150 | "relationships_as_subject": [], | 70 | "relationships_as_subject": [], | ||
n | 151 | "resources": [ | n | 71 | "resources": [], |
152 | { | ||||
153 | "cache_last_updated": null, | ||||
154 | "cache_url": null, | ||||
155 | "created": "2024-12-02T22:29:38", | ||||
156 | "data": [ | ||||
157 | "dcterms:title", | ||||
158 | "dcterms:accessRights", | ||||
159 | "dcterms:creator", | ||||
160 | "dcterms:description", | ||||
161 | "dcterms:issued", | ||||
162 | "dcterms:language", | ||||
163 | "dcterms:identifier", | ||||
164 | "dcat:theme", | ||||
165 | "dcterms:type", | ||||
166 | "dcat:keyword", | ||||
167 | "dcat:landingPage", | ||||
168 | "dcterms:hasVersion", | ||||
169 | "dcterms:format", | ||||
170 | "mls:task", | ||||
171 | "datacite:isDescribedBy" | ||||
172 | ], | ||||
173 | "description": "The json representation of the dataset with its | ||||
174 | distributions based on DCAT.", | ||||
175 | "format": "JSON", | ||||
176 | "hash": "", | ||||
177 | "id": "712e12cf-88e4-4692-9dbd-bb650c7ff7f1", | ||||
178 | "last_modified": "2024-12-02T22:01:53.741340", | ||||
179 | "metadata_modified": "2024-12-02T22:01:53.754411", | ||||
180 | "mimetype": "application/json", | ||||
181 | "mimetype_inner": null, | ||||
182 | "name": "Original Metadata", | ||||
183 | "package_id": "64503b2d-3cbb-4272-b5e4-e495b5f08bf0", | ||||
184 | "position": 0, | ||||
185 | "resource_type": null, | ||||
186 | "size": 1878, | ||||
187 | "state": "active", | ||||
188 | "url": | ||||
189 | resource/712e12cf-88e4-4692-9dbd-bb650c7ff7f1/download/metadata.json", | ||||
190 | "url_type": "upload" | ||||
191 | } | ||||
192 | ], | ||||
193 | "services_used_list": "", | 72 | "services_used_list": "", | ||
194 | "state": "active", | 73 | "state": "active", | ||
195 | "tags": [ | 74 | "tags": [ | ||
196 | { | 75 | { | ||
n | 197 | "display_name": "Chemistry", | n | ||
198 | "id": "b279ae85-dacc-4221-8ddb-84811254dd3b", | ||||
199 | "name": "Chemistry", | ||||
200 | "state": "active", | ||||
201 | "vocabulary_id": null | ||||
202 | }, | ||||
203 | { | ||||
204 | "display_name": "Fuel Design", | ||||
205 | "id": "a29c28a7-9f05-4003-8879-cc13db299339", | ||||
206 | "name": "Fuel Design", | ||||
207 | "state": "active", | ||||
208 | "vocabulary_id": null | ||||
209 | }, | ||||
210 | { | ||||
211 | "display_name": "Graph Neural Networks", | ||||
212 | "id": "8c619694-1a66-4a7d-bcda-bb2d6265d082", | ||||
213 | "name": "Graph Neural Networks", | ||||
214 | "state": "active", | ||||
215 | "vocabulary_id": null | ||||
216 | }, | ||||
217 | { | ||||
218 | "display_name": "Machine Learning", | ||||
219 | "id": "c4f3defc-ca48-45a9-9217-ce35bd3ed73c", | ||||
220 | "name": "Machine Learning", | ||||
221 | "state": "active", | ||||
222 | "vocabulary_id": null | ||||
223 | }, | ||||
224 | { | ||||
225 | "display_name": "Materials Science", | ||||
226 | "id": "eb9a16df-c6d9-448b-8d15-0afff8c86e7b", | ||||
227 | "name": "Materials Science", | ||||
228 | "state": "active", | ||||
229 | "vocabulary_id": null | ||||
230 | }, | ||||
231 | { | ||||
232 | "display_name": "Molecular Dynamics", | ||||
233 | "id": "3e042b83-591c-4e1f-9be8-10a601f890e2", | ||||
234 | "name": "Molecular Dynamics", | ||||
235 | "state": "active", | ||||
236 | "vocabulary_id": null | ||||
237 | }, | ||||
238 | { | ||||
239 | "display_name": "Molecular Graphs", | ||||
240 | "id": "591a20d8-2c75-4ab9-bcfa-7959ca167c65", | ||||
241 | "name": "Molecular Graphs", | ||||
242 | "state": "active", | ||||
243 | "vocabulary_id": null | ||||
244 | }, | ||||
245 | { | ||||
246 | "display_name": "Molecular Property Prediction", | ||||
247 | "id": "4b9f2afd-1c40-4fd4-99d7-11a894639823", | ||||
248 | "name": "Molecular Property Prediction", | ||||
249 | "state": "active", | ||||
250 | "vocabulary_id": null | ||||
251 | }, | ||||
252 | { | ||||
253 | "display_name": "QM9", | 76 | "display_name": "dataset", | ||
254 | "id": "789f74bf-5e58-44af-83d1-5bc831803b26", | 77 | "id": "ce5ad030-ca3d-47e6-abd1-5c92a2806f1b", | ||
255 | "name": "QM9", | 78 | "name": "dataset", | ||
256 | "state": "active", | ||||
257 | "vocabulary_id": null | ||||
258 | }, | ||||
259 | { | ||||
260 | "display_name": "Quantum Chemistry", | ||||
261 | "id": "b4c9fc12-af33-4a0b-aca5-f13f64c019de", | ||||
262 | "name": "Quantum Chemistry", | ||||
263 | "state": "active", | ||||
264 | "vocabulary_id": null | ||||
265 | }, | ||||
266 | { | ||||
267 | "display_name": "atomic positions", | ||||
268 | "id": "6af9aeb6-3d3a-40a8-a4a4-104c20bcdba9", | ||||
269 | "name": "atomic positions", | ||||
270 | "state": "active", | ||||
271 | "vocabulary_id": null | ||||
272 | }, | ||||
273 | { | ||||
274 | "display_name": "chemical compounds", | ||||
275 | "id": "11e2fd2c-30c4-42e6-b61a-7afca11ca909", | ||||
276 | "name": "chemical compounds", | ||||
277 | "state": "active", | ||||
278 | "vocabulary_id": null | ||||
279 | }, | ||||
280 | { | ||||
281 | "display_name": "chemical space", | ||||
282 | "id": "37ef1342-c7ec-425c-9f0e-ddbcc01ffb5f", | ||||
283 | "name": "chemical space", | ||||
284 | "state": "active", | ||||
285 | "vocabulary_id": null | ||||
286 | }, | ||||
287 | { | ||||
288 | "display_name": "machine learning", | ||||
289 | "id": "9e42784b-6ee7-47e8-a69a-28b8c510212b", | ||||
290 | "name": "machine learning", | ||||
291 | "state": "active", | ||||
292 | "vocabulary_id": null | ||||
293 | }, | ||||
294 | { | ||||
295 | "display_name": "molecular characteristics", | ||||
296 | "id": "c8448faf-551b-4de1-97e0-d0e812f21575", | ||||
297 | "name": "molecular characteristics", | ||||
298 | "state": "active", | 79 | "state": "active", | ||
299 | "vocabulary_id": null | 80 | "vocabulary_id": null | ||
300 | }, | 81 | }, | ||
301 | { | 82 | { | ||
302 | "display_name": "molecular properties", | 83 | "display_name": "molecular properties", | ||
303 | "id": "f799284d-135c-4d8e-873a-4a6f18c24c8c", | 84 | "id": "f799284d-135c-4d8e-873a-4a6f18c24c8c", | ||
304 | "name": "molecular properties", | 85 | "name": "molecular properties", | ||
305 | "state": "active", | 86 | "state": "active", | ||
306 | "vocabulary_id": null | 87 | "vocabulary_id": null | ||
307 | }, | 88 | }, | ||
308 | { | 89 | { | ||
n | 309 | "display_name": "organic molecules", | n | 90 | "display_name": "molecular property prediction", |
310 | "id": "987e3960-35c1-4280-8a29-7e6db074beba", | 91 | "id": "0a28e18b-c28e-42d8-b5d8-2d7e8f097c8a", | ||
311 | "name": "organic molecules", | 92 | "name": "molecular property prediction", | ||
312 | "state": "active", | 93 | "state": "active", | ||
313 | "vocabulary_id": null | 94 | "vocabulary_id": null | ||
314 | }, | 95 | }, | ||
315 | { | 96 | { | ||
316 | "display_name": "quantum chemistry", | 97 | "display_name": "quantum chemistry", | ||
317 | "id": "cc36ea4e-35bd-4510-a992-fb5872c4f2c5", | 98 | "id": "cc36ea4e-35bd-4510-a992-fb5872c4f2c5", | ||
318 | "name": "quantum chemistry", | 99 | "name": "quantum chemistry", | ||
319 | "state": "active", | 100 | "state": "active", | ||
320 | "vocabulary_id": null | 101 | "vocabulary_id": null | ||
n | 321 | }, | n | ||
322 | { | ||||
323 | "display_name": "quantum mechanics", | ||||
324 | "id": "8234976b-6b09-4457-8dea-722250cb662c", | ||||
325 | "name": "quantum mechanics", | ||||
326 | "state": "active", | ||||
327 | "vocabulary_id": null | ||||
328 | }, | ||||
329 | { | ||||
330 | "display_name": "small molecules", | ||||
331 | "id": "d324b2b1-12ad-4843-9515-204d89fb85cb", | ||||
332 | "name": "small molecules", | ||||
333 | "state": "active", | ||||
334 | "vocabulary_id": null | ||||
335 | } | 102 | } | ||
336 | ], | 103 | ], | ||
t | 337 | "title": "QM9 dataset", | t | 104 | "title": "QM9 Dataset", |
338 | "type": "dataset", | 105 | "type": "dataset", | ||
339 | "version": "" | 106 | "version": "" | ||
340 | } | 107 | } |