Changes
On December 3, 2024 at 10:21:12 AM UTC, admin:
-
Changed value of field
doi_status
toTrue
in DRFLM: Distributionally Robust Federated Learning with Inter-client Noise via Local Mixup -
Changed value of field
doi_date_published
to2024-12-03
in DRFLM: Distributionally Robust Federated Learning with Inter-client Noise via Local Mixup -
Added resource Original Metadata to DRFLM: Distributionally Robust Federated Learning with Inter-client Noise via Local Mixup
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Bingzhe Wu", | 3 | "author": "Bingzhe Wu", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2204.07742", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2204.07742", | ||
8 | "doi": "10.57702/yz6rbzpo", | 8 | "doi": "10.57702/yz6rbzpo", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-03", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Zhipeng Liang", | 15 | "extra_author": "Zhipeng Liang", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Yuxuan Han", | 19 | "extra_author": "Yuxuan Han", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Yatao Bian", | 23 | "extra_author": "Yatao Bian", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Peilin Zhao", | 27 | "extra_author": "Peilin Zhao", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | }, | 29 | }, | ||
30 | { | 30 | { | ||
31 | "extra_author": "Junzhou Huang", | 31 | "extra_author": "Junzhou Huang", | ||
32 | "orcid": "" | 32 | "orcid": "" | ||
33 | } | 33 | } | ||
34 | ], | 34 | ], | ||
35 | "groups": [ | 35 | "groups": [ | ||
36 | { | 36 | { | ||
37 | "description": "", | 37 | "description": "", | ||
38 | "display_name": "Distributionally Robust Optimization", | 38 | "display_name": "Distributionally Robust Optimization", | ||
39 | "id": "31a0da56-eae6-4420-959b-b47893ca7069", | 39 | "id": "31a0da56-eae6-4420-959b-b47893ca7069", | ||
40 | "image_display_url": "", | 40 | "image_display_url": "", | ||
41 | "name": "distributionally-robust-optimization", | 41 | "name": "distributionally-robust-optimization", | ||
42 | "title": "Distributionally Robust Optimization" | 42 | "title": "Distributionally Robust Optimization" | ||
43 | }, | 43 | }, | ||
44 | { | 44 | { | ||
45 | "description": "", | 45 | "description": "", | ||
46 | "display_name": "Federated Learning", | 46 | "display_name": "Federated Learning", | ||
47 | "id": "549ea2f0-af79-4ec6-8518-504c49ad892b", | 47 | "id": "549ea2f0-af79-4ec6-8518-504c49ad892b", | ||
48 | "image_display_url": "", | 48 | "image_display_url": "", | ||
49 | "name": "federated-learning", | 49 | "name": "federated-learning", | ||
50 | "title": "Federated Learning" | 50 | "title": "Federated Learning" | ||
51 | }, | 51 | }, | ||
52 | { | 52 | { | ||
53 | "description": "", | 53 | "description": "", | ||
54 | "display_name": "Mixup Techniques", | 54 | "display_name": "Mixup Techniques", | ||
55 | "id": "d54aa5e9-05fc-44ca-a6f9-e993c4c126e9", | 55 | "id": "d54aa5e9-05fc-44ca-a6f9-e993c4c126e9", | ||
56 | "image_display_url": "", | 56 | "image_display_url": "", | ||
57 | "name": "mixup-techniques", | 57 | "name": "mixup-techniques", | ||
58 | "title": "Mixup Techniques" | 58 | "title": "Mixup Techniques" | ||
59 | } | 59 | } | ||
60 | ], | 60 | ], | ||
61 | "id": "aa4c6282-8937-454f-a0ce-2422ef7e043e", | 61 | "id": "aa4c6282-8937-454f-a0ce-2422ef7e043e", | ||
62 | "isopen": false, | 62 | "isopen": false, | ||
63 | "landing_page": "", | 63 | "landing_page": "", | ||
64 | "license_title": null, | 64 | "license_title": null, | ||
65 | "link_orkg": "", | 65 | "link_orkg": "", | ||
66 | "metadata_created": "2024-12-03T10:21:10.493510", | 66 | "metadata_created": "2024-12-03T10:21:10.493510", | ||
n | 67 | "metadata_modified": "2024-12-03T10:21:10.493517", | n | 67 | "metadata_modified": "2024-12-03T10:21:10.841729", |
68 | "name": | 68 | "name": | ||
69 | ly-robust-federated-learning-with-inter-client-noise-via-local-mixup", | 69 | ly-robust-federated-learning-with-inter-client-noise-via-local-mixup", | ||
70 | "notes": "The authors propose a general framework to solve the two | 70 | "notes": "The authors propose a general framework to solve the two | ||
71 | challenges simultaneously: inter-client data heterogeneity and | 71 | challenges simultaneously: inter-client data heterogeneity and | ||
72 | intra-client data noise. The framework uses distributionally robust | 72 | intra-client data noise. The framework uses distributionally robust | ||
73 | optimization to mitigate the negative effects caused by data | 73 | optimization to mitigate the negative effects caused by data | ||
74 | heterogeneity and incorporates mixup techniques into the local | 74 | heterogeneity and incorporates mixup techniques into the local | ||
75 | training process to mitigate the effects of intra-client data noise.", | 75 | training process to mitigate the effects of intra-client data noise.", | ||
n | 76 | "num_resources": 0, | n | 76 | "num_resources": 1, |
77 | "num_tags": 5, | 77 | "num_tags": 5, | ||
78 | "organization": { | 78 | "organization": { | ||
79 | "approval_status": "approved", | 79 | "approval_status": "approved", | ||
80 | "created": "2024-11-25T12:11:38.292601", | 80 | "created": "2024-11-25T12:11:38.292601", | ||
81 | "description": "", | 81 | "description": "", | ||
82 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 82 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
83 | "image_url": "", | 83 | "image_url": "", | ||
84 | "is_organization": true, | 84 | "is_organization": true, | ||
85 | "name": "no-organization", | 85 | "name": "no-organization", | ||
86 | "state": "active", | 86 | "state": "active", | ||
87 | "title": "No Organization", | 87 | "title": "No Organization", | ||
88 | "type": "organization" | 88 | "type": "organization" | ||
89 | }, | 89 | }, | ||
90 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 90 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
91 | "private": false, | 91 | "private": false, | ||
92 | "relationships_as_object": [], | 92 | "relationships_as_object": [], | ||
93 | "relationships_as_subject": [], | 93 | "relationships_as_subject": [], | ||
t | 94 | "resources": [], | t | 94 | "resources": [ |
95 | { | ||||
96 | "cache_last_updated": null, | ||||
97 | "cache_url": null, | ||||
98 | "created": "2024-12-03T11:11:17", | ||||
99 | "data": [ | ||||
100 | "dcterms:title", | ||||
101 | "dcterms:accessRights", | ||||
102 | "dcterms:creator", | ||||
103 | "dcterms:description", | ||||
104 | "dcterms:issued", | ||||
105 | "dcterms:language", | ||||
106 | "dcterms:identifier", | ||||
107 | "dcat:theme", | ||||
108 | "dcterms:type", | ||||
109 | "dcat:keyword", | ||||
110 | "dcat:landingPage", | ||||
111 | "dcterms:hasVersion", | ||||
112 | "dcterms:format", | ||||
113 | "mls:task", | ||||
114 | "datacite:isDescribedBy" | ||||
115 | ], | ||||
116 | "description": "The json representation of the dataset with its | ||||
117 | distributions based on DCAT.", | ||||
118 | "format": "JSON", | ||||
119 | "hash": "", | ||||
120 | "id": "e6394142-fd80-43ce-a8f9-b2d9dc124604", | ||||
121 | "last_modified": "2024-12-03T10:21:10.833962", | ||||
122 | "metadata_modified": "2024-12-03T10:21:10.844771", | ||||
123 | "mimetype": "application/json", | ||||
124 | "mimetype_inner": null, | ||||
125 | "name": "Original Metadata", | ||||
126 | "package_id": "aa4c6282-8937-454f-a0ce-2422ef7e043e", | ||||
127 | "position": 0, | ||||
128 | "resource_type": null, | ||||
129 | "size": 1262, | ||||
130 | "state": "active", | ||||
131 | "url": | ||||
132 | resource/e6394142-fd80-43ce-a8f9-b2d9dc124604/download/metadata.json", | ||||
133 | "url_type": "upload" | ||||
134 | } | ||||
135 | ], | ||||
95 | "services_used_list": "", | 136 | "services_used_list": "", | ||
96 | "state": "active", | 137 | "state": "active", | ||
97 | "tags": [ | 138 | "tags": [ | ||
98 | { | 139 | { | ||
99 | "display_name": "Distributionally Robust Optimization", | 140 | "display_name": "Distributionally Robust Optimization", | ||
100 | "id": "03b66c08-ec90-45cc-b93b-984bbe42819b", | 141 | "id": "03b66c08-ec90-45cc-b93b-984bbe42819b", | ||
101 | "name": "Distributionally Robust Optimization", | 142 | "name": "Distributionally Robust Optimization", | ||
102 | "state": "active", | 143 | "state": "active", | ||
103 | "vocabulary_id": null | 144 | "vocabulary_id": null | ||
104 | }, | 145 | }, | ||
105 | { | 146 | { | ||
106 | "display_name": "Federated Learning", | 147 | "display_name": "Federated Learning", | ||
107 | "id": "457a40d1-65a2-4186-b368-30d39191ea94", | 148 | "id": "457a40d1-65a2-4186-b368-30d39191ea94", | ||
108 | "name": "Federated Learning", | 149 | "name": "Federated Learning", | ||
109 | "state": "active", | 150 | "state": "active", | ||
110 | "vocabulary_id": null | 151 | "vocabulary_id": null | ||
111 | }, | 152 | }, | ||
112 | { | 153 | { | ||
113 | "display_name": "Inter-client Data Heterogeneity", | 154 | "display_name": "Inter-client Data Heterogeneity", | ||
114 | "id": "54607e34-9a1c-4457-9944-912d4b4f2dca", | 155 | "id": "54607e34-9a1c-4457-9944-912d4b4f2dca", | ||
115 | "name": "Inter-client Data Heterogeneity", | 156 | "name": "Inter-client Data Heterogeneity", | ||
116 | "state": "active", | 157 | "state": "active", | ||
117 | "vocabulary_id": null | 158 | "vocabulary_id": null | ||
118 | }, | 159 | }, | ||
119 | { | 160 | { | ||
120 | "display_name": "Intra-client Data Noise", | 161 | "display_name": "Intra-client Data Noise", | ||
121 | "id": "af36c7e1-240c-47d9-bc72-43b9e7142e9f", | 162 | "id": "af36c7e1-240c-47d9-bc72-43b9e7142e9f", | ||
122 | "name": "Intra-client Data Noise", | 163 | "name": "Intra-client Data Noise", | ||
123 | "state": "active", | 164 | "state": "active", | ||
124 | "vocabulary_id": null | 165 | "vocabulary_id": null | ||
125 | }, | 166 | }, | ||
126 | { | 167 | { | ||
127 | "display_name": "Mixup Techniques", | 168 | "display_name": "Mixup Techniques", | ||
128 | "id": "30b3af74-6cd7-4578-9d6a-55ffe75b96b1", | 169 | "id": "30b3af74-6cd7-4578-9d6a-55ffe75b96b1", | ||
129 | "name": "Mixup Techniques", | 170 | "name": "Mixup Techniques", | ||
130 | "state": "active", | 171 | "state": "active", | ||
131 | "vocabulary_id": null | 172 | "vocabulary_id": null | ||
132 | } | 173 | } | ||
133 | ], | 174 | ], | ||
134 | "title": "DRFLM: Distributionally Robust Federated Learning with | 175 | "title": "DRFLM: Distributionally Robust Federated Learning with | ||
135 | Inter-client Noise via Local Mixup", | 176 | Inter-client Noise via Local Mixup", | ||
136 | "type": "dataset", | 177 | "type": "dataset", | ||
137 | "version": "" | 178 | "version": "" | ||
138 | } | 179 | } |