Changes
On December 17, 2024 at 12:14:00 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Policy Gradients using Variational Quantum Circuits -
Changed value of field
doi_date_published
to2024-12-17
in Policy Gradients using Variational Quantum Circuits -
Added resource Original Metadata to Policy Gradients using Variational Quantum Circuits
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Andr\u00b4e Sequeira", | 3 | "author": "Andr\u00b4e Sequeira", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2203.10591", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2203.10591", | ||
8 | "doi": "10.57702/ebuhalmc", | 8 | "doi": "10.57702/ebuhalmc", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-17", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Luis Paulo Santos", | 15 | "extra_author": "Luis Paulo Santos", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Luis Soares", | 19 | "extra_author": "Luis Soares", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | } | 21 | } | ||
22 | ], | 22 | ], | ||
23 | "groups": [ | 23 | "groups": [ | ||
24 | { | 24 | { | ||
25 | "description": "", | 25 | "description": "", | ||
26 | "display_name": "Policy Gradients", | 26 | "display_name": "Policy Gradients", | ||
27 | "id": "6ddecd65-1b93-4932-a2ae-68b1edb71be1", | 27 | "id": "6ddecd65-1b93-4932-a2ae-68b1edb71be1", | ||
28 | "image_display_url": "", | 28 | "image_display_url": "", | ||
29 | "name": "policy-gradients", | 29 | "name": "policy-gradients", | ||
30 | "title": "Policy Gradients" | 30 | "title": "Policy Gradients" | ||
31 | }, | 31 | }, | ||
32 | { | 32 | { | ||
33 | "description": "", | 33 | "description": "", | ||
34 | "display_name": "Quantum Machine Learning", | 34 | "display_name": "Quantum Machine Learning", | ||
35 | "id": "d96b79ac-ba30-4534-bc5d-58d10d81f7aa", | 35 | "id": "d96b79ac-ba30-4534-bc5d-58d10d81f7aa", | ||
36 | "image_display_url": "", | 36 | "image_display_url": "", | ||
37 | "name": "quantum-machine-learning", | 37 | "name": "quantum-machine-learning", | ||
38 | "title": "Quantum Machine Learning" | 38 | "title": "Quantum Machine Learning" | ||
39 | }, | 39 | }, | ||
40 | { | 40 | { | ||
41 | "description": "", | 41 | "description": "", | ||
42 | "display_name": "Reinforcement Learning", | 42 | "display_name": "Reinforcement Learning", | ||
43 | "id": "5f9e20df-0af0-4b7e-9637-e244d4a99379", | 43 | "id": "5f9e20df-0af0-4b7e-9637-e244d4a99379", | ||
44 | "image_display_url": "", | 44 | "image_display_url": "", | ||
45 | "name": "reinforcement-learning", | 45 | "name": "reinforcement-learning", | ||
46 | "title": "Reinforcement Learning" | 46 | "title": "Reinforcement Learning" | ||
47 | } | 47 | } | ||
48 | ], | 48 | ], | ||
49 | "id": "7e647e34-fff3-426b-88c8-1569ecd43cfe", | 49 | "id": "7e647e34-fff3-426b-88c8-1569ecd43cfe", | ||
50 | "isopen": false, | 50 | "isopen": false, | ||
51 | "landing_page": "", | 51 | "landing_page": "", | ||
52 | "license_title": null, | 52 | "license_title": null, | ||
53 | "link_orkg": "", | 53 | "link_orkg": "", | ||
54 | "metadata_created": "2024-12-17T12:13:58.532650", | 54 | "metadata_created": "2024-12-17T12:13:58.532650", | ||
n | 55 | "metadata_modified": "2024-12-17T12:13:58.532655", | n | 55 | "metadata_modified": "2024-12-17T12:13:58.937852", |
56 | "name": "policy-gradients-using-variational-quantum-circuits", | 56 | "name": "policy-gradients-using-variational-quantum-circuits", | ||
57 | "notes": "Variational Quantum Circuits are being used as versatile | 57 | "notes": "Variational Quantum Circuits are being used as versatile | ||
58 | Quantum Machine Learning models. Some empirical results exhibit an | 58 | Quantum Machine Learning models. Some empirical results exhibit an | ||
59 | advantage in supervised and generative learning tasks. However, when | 59 | advantage in supervised and generative learning tasks. However, when | ||
60 | applied to Reinforcement Learning, less is known. In this work, we | 60 | applied to Reinforcement Learning, less is known. In this work, we | ||
61 | considered a Variational Quantum Circuit composed of a low-depth | 61 | considered a Variational Quantum Circuit composed of a low-depth | ||
62 | hardware-e\ufb03cient ansatz as the parameterized policy of a | 62 | hardware-e\ufb03cient ansatz as the parameterized policy of a | ||
63 | Reinforcement Learning agent.", | 63 | Reinforcement Learning agent.", | ||
n | 64 | "num_resources": 0, | n | 64 | "num_resources": 1, |
65 | "num_tags": 3, | 65 | "num_tags": 3, | ||
66 | "organization": { | 66 | "organization": { | ||
67 | "approval_status": "approved", | 67 | "approval_status": "approved", | ||
68 | "created": "2024-11-25T12:11:38.292601", | 68 | "created": "2024-11-25T12:11:38.292601", | ||
69 | "description": "", | 69 | "description": "", | ||
70 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 70 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
71 | "image_url": "", | 71 | "image_url": "", | ||
72 | "is_organization": true, | 72 | "is_organization": true, | ||
73 | "name": "no-organization", | 73 | "name": "no-organization", | ||
74 | "state": "active", | 74 | "state": "active", | ||
75 | "title": "No Organization", | 75 | "title": "No Organization", | ||
76 | "type": "organization" | 76 | "type": "organization" | ||
77 | }, | 77 | }, | ||
78 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 78 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
79 | "private": false, | 79 | "private": false, | ||
80 | "relationships_as_object": [], | 80 | "relationships_as_object": [], | ||
81 | "relationships_as_subject": [], | 81 | "relationships_as_subject": [], | ||
t | 82 | "resources": [], | t | 82 | "resources": [ |
83 | { | ||||
84 | "cache_last_updated": null, | ||||
85 | "cache_url": null, | ||||
86 | "created": "2024-12-17T13:07:25", | ||||
87 | "data": [ | ||||
88 | "dcterms:title", | ||||
89 | "dcterms:accessRights", | ||||
90 | "dcterms:creator", | ||||
91 | "dcterms:description", | ||||
92 | "dcterms:issued", | ||||
93 | "dcterms:language", | ||||
94 | "dcterms:identifier", | ||||
95 | "dcat:theme", | ||||
96 | "dcterms:type", | ||||
97 | "dcat:keyword", | ||||
98 | "dcat:landingPage", | ||||
99 | "dcterms:hasVersion", | ||||
100 | "dcterms:format", | ||||
101 | "mls:task", | ||||
102 | "datacite:isDescribedBy" | ||||
103 | ], | ||||
104 | "description": "The json representation of the dataset with its | ||||
105 | distributions based on DCAT.", | ||||
106 | "format": "JSON", | ||||
107 | "hash": "", | ||||
108 | "id": "1f38af85-adc7-4879-801f-d16fe5395de0", | ||||
109 | "last_modified": "2024-12-17T12:13:58.930478", | ||||
110 | "metadata_modified": "2024-12-17T12:13:58.940661", | ||||
111 | "mimetype": "application/json", | ||||
112 | "mimetype_inner": null, | ||||
113 | "name": "Original Metadata", | ||||
114 | "package_id": "7e647e34-fff3-426b-88c8-1569ecd43cfe", | ||||
115 | "position": 0, | ||||
116 | "resource_type": null, | ||||
117 | "size": 1095, | ||||
118 | "state": "active", | ||||
119 | "url": | ||||
120 | resource/1f38af85-adc7-4879-801f-d16fe5395de0/download/metadata.json", | ||||
121 | "url_type": "upload" | ||||
122 | } | ||||
123 | ], | ||||
83 | "services_used_list": "", | 124 | "services_used_list": "", | ||
84 | "state": "active", | 125 | "state": "active", | ||
85 | "tags": [ | 126 | "tags": [ | ||
86 | { | 127 | { | ||
87 | "display_name": "Policy Gradients", | 128 | "display_name": "Policy Gradients", | ||
88 | "id": "ec30eae6-76a4-4bde-a839-7621e9ba8371", | 129 | "id": "ec30eae6-76a4-4bde-a839-7621e9ba8371", | ||
89 | "name": "Policy Gradients", | 130 | "name": "Policy Gradients", | ||
90 | "state": "active", | 131 | "state": "active", | ||
91 | "vocabulary_id": null | 132 | "vocabulary_id": null | ||
92 | }, | 133 | }, | ||
93 | { | 134 | { | ||
94 | "display_name": "Reinforcement Learning", | 135 | "display_name": "Reinforcement Learning", | ||
95 | "id": "0bd14238-9c5d-4905-8165-c7e5a0c0884c", | 136 | "id": "0bd14238-9c5d-4905-8165-c7e5a0c0884c", | ||
96 | "name": "Reinforcement Learning", | 137 | "name": "Reinforcement Learning", | ||
97 | "state": "active", | 138 | "state": "active", | ||
98 | "vocabulary_id": null | 139 | "vocabulary_id": null | ||
99 | }, | 140 | }, | ||
100 | { | 141 | { | ||
101 | "display_name": "Variational Quantum Circuits", | 142 | "display_name": "Variational Quantum Circuits", | ||
102 | "id": "93743ddb-61c6-40dc-a4c5-90f2ccf071b5", | 143 | "id": "93743ddb-61c6-40dc-a4c5-90f2ccf071b5", | ||
103 | "name": "Variational Quantum Circuits", | 144 | "name": "Variational Quantum Circuits", | ||
104 | "state": "active", | 145 | "state": "active", | ||
105 | "vocabulary_id": null | 146 | "vocabulary_id": null | ||
106 | } | 147 | } | ||
107 | ], | 148 | ], | ||
108 | "title": "Policy Gradients using Variational Quantum Circuits", | 149 | "title": "Policy Gradients using Variational Quantum Circuits", | ||
109 | "type": "dataset", | 150 | "type": "dataset", | ||
110 | "version": "" | 151 | "version": "" | ||
111 | } | 152 | } |