f | { | f | { |
| "access_rights": "", | | "access_rights": "", |
n | "author": "NIH", | n | "author": "Yunze Man", |
| "author_email": "", | | "author_email": "", |
n | "citation": [], | n | "citation": [ |
| | | "https://doi.org/10.48550/arXiv.1709.04518" |
| | | ], |
| "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", |
n | "defined_in": "", | n | "defined_in": "https://doi.org/10.1016/j.media.2020.101766", |
| "doi": "10.57702/o344289a", | | "doi": "10.57702/o344289a", |
| "doi_date_published": "2024-12-16", | | "doi_date_published": "2024-12-16", |
| "doi_publisher": "TIB", | | "doi_publisher": "TIB", |
| "doi_status": true, | | "doi_status": true, |
| "domain": "https://service.tib.eu/ldmservice", | | "domain": "https://service.tib.eu/ldmservice", |
n | | n | "extra_authors": [ |
| | | { |
| | | "extra_author": "Yangsibo Huang", |
| | | "orcid": "" |
| | | }, |
| | | { |
| | | "extra_author": "Junyi Feng", |
| | | "orcid": "" |
| | | }, |
| | | { |
| | | "extra_author": "Xi Li", |
| | | "orcid": "" |
| | | }, |
| | | { |
| | | "extra_author": "Fei Wu", |
| | | "orcid": "" |
| | | } |
| | | ], |
| "groups": [ | | "groups": [ |
n | | n | { |
| | | "description": "", |
| | | "display_name": "Medical Image Analysis", |
| | | "id": "2f8bf60c-dbda-4650-b6f0-ee38a7549438", |
| | | "image_display_url": "", |
| | | "name": "medical-image-analysis", |
| | | "title": "Medical Image Analysis" |
| | | }, |
| { | | { |
| "description": "", | | "description": "", |
| "display_name": "Medical Imaging", | | "display_name": "Medical Imaging", |
| "id": "b86e8f52-a230-44ce-b290-7823c9f6a877", | | "id": "b86e8f52-a230-44ce-b290-7823c9f6a877", |
| "image_display_url": "", | | "image_display_url": "", |
| "name": "medical-imaging", | | "name": "medical-imaging", |
| "title": "Medical Imaging" | | "title": "Medical Imaging" |
| } | | } |
| ], | | ], |
| "id": "34aff755-cfd8-42d0-b78a-a8384819a7a0", | | "id": "34aff755-cfd8-42d0-b78a-a8384819a7a0", |
| "isopen": false, | | "isopen": false, |
n | "landing_page": "", | n | "landing_page": "https://doi.org/10.1038/s41598-018-25647-4", |
| "license_title": null, | | "license_title": null, |
| "link_orkg": "", | | "link_orkg": "", |
| "metadata_created": "2024-12-16T17:51:26.806049", | | "metadata_created": "2024-12-16T17:51:26.806049", |
n | "metadata_modified": "2024-12-16T17:51:27.237658", | n | "metadata_modified": "2024-12-16T18:39:03.701468", |
| "name": "nih-pancreas-segmentation-dataset", | | "name": "nih-pancreas-segmentation-dataset", |
n | "notes": "The dataset consists of 82 abdominal CT volumes.", | n | "notes": "The NIH pancreas segmentation dataset contains 82 |
| | | abdominal CT volumes. The width and height of each volume are 512, |
| | | while the axial view slice number can vary from 181 to 466. Under |
| | | semi-supervised settings, the dataset is randomly split into 20 |
| | | testing cases and 62 training cases.", |
| "num_resources": 1, | | "num_resources": 0, |
| "num_tags": 3, | | "num_tags": 6, |
| "organization": { | | "organization": { |
| "approval_status": "approved", | | "approval_status": "approved", |
| "created": "2024-11-25T12:11:38.292601", | | "created": "2024-11-25T12:11:38.292601", |
| "description": "", | | "description": "", |
| "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", |
| "image_url": "", | | "image_url": "", |
| "is_organization": true, | | "is_organization": true, |
| "name": "no-organization", | | "name": "no-organization", |
| "state": "active", | | "state": "active", |
| "title": "No Organization", | | "title": "No Organization", |
| "type": "organization" | | "type": "organization" |
| }, | | }, |
| "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", |
| "private": false, | | "private": false, |
| "relationships_as_object": [], | | "relationships_as_object": [], |
| "relationships_as_subject": [], | | "relationships_as_subject": [], |
n | "resources": [ | n | "resources": [], |
| { | | |
| "cache_last_updated": null, | | |
| "cache_url": null, | | |
| "created": "2024-12-16T18:25:31", | | |
| "data": [ | | |
| "dcterms:title", | | |
| "dcterms:accessRights", | | |
| "dcterms:creator", | | |
| "dcterms:description", | | |
| "dcterms:issued", | | |
| "dcterms:language", | | |
| "dcterms:identifier", | | |
| "dcat:theme", | | |
| "dcterms:type", | | |
| "dcat:keyword", | | |
| "dcat:landingPage", | | |
| "dcterms:hasVersion", | | |
| "dcterms:format", | | |
| "mls:task" | | |
| ], | | |
| "description": "The json representation of the dataset with its | | |
| distributions based on DCAT.", | | |
| "format": "JSON", | | |
| "hash": "", | | |
| "id": "13e35021-3978-4647-82e2-c868b359b837", | | |
| "last_modified": "2024-12-16T17:51:27.230513", | | |
| "metadata_modified": "2024-12-16T17:51:27.240477", | | |
| "mimetype": "application/json", | | |
| "mimetype_inner": null, | | |
| "name": "Original Metadata", | | |
| "package_id": "34aff755-cfd8-42d0-b78a-a8384819a7a0", | | |
| "position": 0, | | |
| "resource_type": null, | | |
| "size": 514, | | |
| "state": "active", | | |
| "url": | | |
| resource/13e35021-3978-4647-82e2-c868b359b837/download/metadata.json", | | |
| "url_type": "upload" | | |
| } | | |
| ], | | |
| "services_used_list": "", | | "services_used_list": "", |
| "state": "active", | | "state": "active", |
| "tags": [ | | "tags": [ |
| { | | { |
n | "display_name": "CT Scans", | n | "display_name": "CT scans", |
| "id": "a9e5e755-dc6a-465f-b7ba-88a42b502293", | | "id": "c9a7a2fa-09f0-4ac3-952e-72a465e448fa", |
| "name": "CT Scans", | | "name": "CT scans", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
n | "display_name": "Medical Imaging", | n | "display_name": "Medical Image Segmentation", |
| "id": "10261ea5-4420-472c-8004-e29d20a88fb8", | | "id": "a90cdc4c-84c9-4603-8c0e-8e18a0ff936f", |
| "name": "Medical Imaging", | | "name": "Medical Image Segmentation", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| }, | | }, |
| { | | { |
n | | n | "display_name": "Semi-supervised Learning", |
| | | "id": "8beffbec-e8a0-46a4-8dc2-bc25f6b10b22", |
| | | "name": "Semi-supervised Learning", |
| | | "state": "active", |
| | | "vocabulary_id": null |
| | | }, |
| | | { |
| | | "display_name": "medical image analysis", |
| | | "id": "1a727667-ecbc-4b74-8adb-e03697de19c9", |
| | | "name": "medical image analysis", |
| | | "state": "active", |
| | | "vocabulary_id": null |
| | | }, |
| | | { |
| "display_name": "Pancreas", | | "display_name": "pancreas", |
| "id": "0f6ce1e8-9648-46f9-a582-d192e3da0988", | | "id": "bab9c4cf-c5c0-45b8-97a9-1742af365274", |
| "name": "Pancreas", | | "name": "pancreas", |
| | | "state": "active", |
| | | "vocabulary_id": null |
| | | }, |
| | | { |
| | | "display_name": "segmentation", |
| | | "id": "7ce0e509-9f57-44c4-a015-f1ab9872bb44", |
| | | "name": "segmentation", |
| "state": "active", | | "state": "active", |
| "vocabulary_id": null | | "vocabulary_id": null |
| } | | } |
| ], | | ], |
t | "title": "NIH Pancreas Segmentation dataset", | t | "title": "NIH pancreas segmentation dataset", |
| "type": "dataset", | | "type": "dataset", |
| "version": "" | | "version": "" |
| } | | } |