Changes
On August 4, 2023 at 8:53:36 AM UTC, admin:
-
No fields were updated. See the metadata diff for more details.
f | 1 | { | f | 1 | { |
2 | "author": "Wang, Kai", | 2 | "author": "Wang, Kai", | ||
3 | "author_email": "", | 3 | "author_email": "", | ||
4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 4 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
5 | "doi": "10.35097/1415", | 5 | "doi": "10.35097/1415", | ||
6 | "doi_date_published": "2023", | 6 | "doi_date_published": "2023", | ||
7 | "doi_publisher": "", | 7 | "doi_publisher": "", | ||
8 | "doi_status": "True", | 8 | "doi_status": "True", | ||
9 | "extra_authors": [ | 9 | "extra_authors": [ | ||
10 | { | 10 | { | ||
11 | "extra_author": "Hua, Weibo", | 11 | "extra_author": "Hua, Weibo", | ||
12 | "orcid": "" | 12 | "orcid": "" | ||
13 | }, | 13 | }, | ||
14 | { | 14 | { | ||
15 | "extra_author": "Huang, Xiaohui", | 15 | "extra_author": "Huang, Xiaohui", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Stenzel, David", | 19 | "extra_author": "Stenzel, David", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | }, | 21 | }, | ||
22 | { | 22 | { | ||
23 | "extra_author": "Wang, Junbo", | 23 | "extra_author": "Wang, Junbo", | ||
24 | "orcid": "" | 24 | "orcid": "" | ||
25 | }, | 25 | }, | ||
26 | { | 26 | { | ||
27 | "extra_author": "Ding, Ziming", | 27 | "extra_author": "Ding, Ziming", | ||
28 | "orcid": "" | 28 | "orcid": "" | ||
29 | }, | 29 | }, | ||
30 | { | 30 | { | ||
31 | "extra_author": "Cui, Yanyan", | 31 | "extra_author": "Cui, Yanyan", | ||
32 | "orcid": "" | 32 | "orcid": "" | ||
33 | }, | 33 | }, | ||
34 | { | 34 | { | ||
35 | "extra_author": "Wang, Qingsong", | 35 | "extra_author": "Wang, Qingsong", | ||
36 | "orcid": "" | 36 | "orcid": "" | ||
37 | }, | 37 | }, | ||
38 | { | 38 | { | ||
39 | "extra_author": "Ehrenberg, Helmut", | 39 | "extra_author": "Ehrenberg, Helmut", | ||
40 | "orcid": "" | 40 | "orcid": "" | ||
41 | }, | 41 | }, | ||
42 | { | 42 | { | ||
43 | "extra_author": "Breitung, Ben", | 43 | "extra_author": "Breitung, Ben", | ||
44 | "orcid": "" | 44 | "orcid": "" | ||
45 | }, | 45 | }, | ||
46 | { | 46 | { | ||
47 | "extra_author": "K\u00fcbel, Christian", | 47 | "extra_author": "K\u00fcbel, Christian", | ||
48 | "orcid": "0000-0001-5701-4006" | 48 | "orcid": "0000-0001-5701-4006" | ||
49 | }, | 49 | }, | ||
50 | { | 50 | { | ||
51 | "extra_author": "Mu, Xiaoke", | 51 | "extra_author": "Mu, Xiaoke", | ||
52 | "orcid": "" | 52 | "orcid": "" | ||
53 | } | 53 | } | ||
54 | ], | 54 | ], | ||
55 | "groups": [], | 55 | "groups": [], | ||
56 | "id": "ca3a94e8-1acc-440b-9c7e-abcb47362859", | 56 | "id": "ca3a94e8-1acc-440b-9c7e-abcb47362859", | ||
57 | "isopen": false, | 57 | "isopen": false, | ||
58 | "license_id": "CC BY-NC 4.0 Attribution-NonCommercial", | 58 | "license_id": "CC BY-NC 4.0 Attribution-NonCommercial", | ||
59 | "license_title": "CC BY-NC 4.0 Attribution-NonCommercial", | 59 | "license_title": "CC BY-NC 4.0 Attribution-NonCommercial", | ||
60 | "metadata_created": "2023-08-04T08:50:46.863985", | 60 | "metadata_created": "2023-08-04T08:50:46.863985", | ||
t | 61 | "metadata_modified": "2023-08-04T08:52:03.705941", | t | 61 | "metadata_modified": "2023-08-04T08:53:36.542658", |
62 | "name": "rdr-doi-10-35097-1415", | 62 | "name": "rdr-doi-10-35097-1415", | ||
63 | "notes": "Abstract: High entropy oxides (HEOs) with chemically | 63 | "notes": "Abstract: High entropy oxides (HEOs) with chemically | ||
64 | disordered multi-cation structure attract intensive interest as | 64 | disordered multi-cation structure attract intensive interest as | ||
65 | negative electrode materials for battery applications. The outstanding | 65 | negative electrode materials for battery applications. The outstanding | ||
66 | electrochemical performance is attributed to the high-entropy | 66 | electrochemical performance is attributed to the high-entropy | ||
67 | stabilization and so-called \u2018cocktail effect\u2019. However, the | 67 | stabilization and so-called \u2018cocktail effect\u2019. However, the | ||
68 | configurational entropy is insufficient to drive the structural | 68 | configurational entropy is insufficient to drive the structural | ||
69 | reversibility of the room-temperature thermodynamically metastable HEO | 69 | reversibility of the room-temperature thermodynamically metastable HEO | ||
70 | during conversion-type battery reaction, and the \u2018cocktail | 70 | during conversion-type battery reaction, and the \u2018cocktail | ||
71 | effect\u2019 has not been explained thus far. This work unveils the | 71 | effect\u2019 has not been explained thus far. This work unveils the | ||
72 | multi-cations synergy of the HEO Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O at atomic | 72 | multi-cations synergy of the HEO Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O at atomic | ||
73 | and nanoscale during electrochemical reaction and explains the | 73 | and nanoscale during electrochemical reaction and explains the | ||
74 | \u2018cocktail effect\u2019. The more electronegative elements form an | 74 | \u2018cocktail effect\u2019. The more electronegative elements form an | ||
75 | electrochemically inert 3-dimensional metallic nano-network enabling | 75 | electrochemically inert 3-dimensional metallic nano-network enabling | ||
76 | electron transport. The electrochemical inactive cation stabilizes an | 76 | electron transport. The electrochemical inactive cation stabilizes an | ||
77 | oxide nanophase, which is semi-coherent with the metallic phase and | 77 | oxide nanophase, which is semi-coherent with the metallic phase and | ||
78 | accommodates Li+ ions. This self-assembled nanostructure enables | 78 | accommodates Li+ ions. This self-assembled nanostructure enables | ||
79 | stable cycling of micron-sized particles, which bypasses the need for | 79 | stable cycling of micron-sized particles, which bypasses the need for | ||
80 | nanoscale pre-modification required for conventional metal oxides in | 80 | nanoscale pre-modification required for conventional metal oxides in | ||
81 | battery applications. This demonstrates elemental diversity is the key | 81 | battery applications. This demonstrates elemental diversity is the key | ||
82 | for optimizing multi-cation electrode materials.\r\nTechnicalRemarks: | 82 | for optimizing multi-cation electrode materials.\r\nTechnicalRemarks: | ||
83 | Information about the data format and software suitable to open the | 83 | Information about the data format and software suitable to open the | ||
84 | data is available in the subdirectory 'description'", | 84 | data is available in the subdirectory 'description'", | ||
85 | "num_resources": 0, | 85 | "num_resources": 0, | ||
86 | "num_tags": 4, | 86 | "num_tags": 4, | ||
87 | "orcid": "", | 87 | "orcid": "", | ||
88 | "organization": { | 88 | "organization": { | ||
89 | "approval_status": "approved", | 89 | "approval_status": "approved", | ||
90 | "created": "2023-01-12T13:30:23.238233", | 90 | "created": "2023-01-12T13:30:23.238233", | ||
91 | "description": "RADAR (Research Data Repository) is a | 91 | "description": "RADAR (Research Data Repository) is a | ||
92 | cross-disciplinary repository for archiving and publishing research | 92 | cross-disciplinary repository for archiving and publishing research | ||
93 | data from completed scientific studies and projects. The focus is on | 93 | data from completed scientific studies and projects. The focus is on | ||
94 | research data from subjects that do not yet have their own | 94 | research data from subjects that do not yet have their own | ||
95 | discipline-specific infrastructures for research data management. ", | 95 | discipline-specific infrastructures for research data management. ", | ||
96 | "id": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | 96 | "id": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | ||
97 | "image_url": "radar-logo.svg", | 97 | "image_url": "radar-logo.svg", | ||
98 | "is_organization": true, | 98 | "is_organization": true, | ||
99 | "name": "radar", | 99 | "name": "radar", | ||
100 | "state": "active", | 100 | "state": "active", | ||
101 | "title": "RADAR", | 101 | "title": "RADAR", | ||
102 | "type": "organization" | 102 | "type": "organization" | ||
103 | }, | 103 | }, | ||
104 | "owner_org": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | 104 | "owner_org": "013c89a9-383c-4200-8baa-0f78bf1d91f9", | ||
105 | "private": false, | 105 | "private": false, | ||
106 | "production_year": "2022", | 106 | "production_year": "2022", | ||
107 | "publication_year": "2023", | 107 | "publication_year": "2023", | ||
108 | "publishers": [ | 108 | "publishers": [ | ||
109 | { | 109 | { | ||
110 | "publisher": "Karlsruhe Institute of Technology" | 110 | "publisher": "Karlsruhe Institute of Technology" | ||
111 | } | 111 | } | ||
112 | ], | 112 | ], | ||
113 | "relationships_as_object": [], | 113 | "relationships_as_object": [], | ||
114 | "relationships_as_subject": [], | 114 | "relationships_as_subject": [], | ||
115 | "repository_name": "RADAR (Research Data Repository)", | 115 | "repository_name": "RADAR (Research Data Repository)", | ||
116 | "resources": [], | 116 | "resources": [], | ||
117 | "services_used_list": "", | 117 | "services_used_list": "", | ||
118 | "source_metadata_created": "2023", | 118 | "source_metadata_created": "2023", | ||
119 | "source_metadata_modified": "", | 119 | "source_metadata_modified": "", | ||
120 | "state": "active", | 120 | "state": "active", | ||
121 | "subject_areas": [ | 121 | "subject_areas": [ | ||
122 | { | 122 | { | ||
123 | "subject_area_additional": "", | 123 | "subject_area_additional": "", | ||
124 | "subject_area_name": "Engineering" | 124 | "subject_area_name": "Engineering" | ||
125 | } | 125 | } | ||
126 | ], | 126 | ], | ||
127 | "tags": [ | 127 | "tags": [ | ||
128 | { | 128 | { | ||
129 | "display_name": "battery materials", | 129 | "display_name": "battery materials", | ||
130 | "id": "71c278e2-4638-473f-a6ae-bb366363a10e", | 130 | "id": "71c278e2-4638-473f-a6ae-bb366363a10e", | ||
131 | "name": "battery materials", | 131 | "name": "battery materials", | ||
132 | "state": "active", | 132 | "state": "active", | ||
133 | "vocabulary_id": null | 133 | "vocabulary_id": null | ||
134 | }, | 134 | }, | ||
135 | { | 135 | { | ||
136 | "display_name": "cation synergy", | 136 | "display_name": "cation synergy", | ||
137 | "id": "39d15175-29d8-4a8c-b161-71ae3848fe79", | 137 | "id": "39d15175-29d8-4a8c-b161-71ae3848fe79", | ||
138 | "name": "cation synergy", | 138 | "name": "cation synergy", | ||
139 | "state": "active", | 139 | "state": "active", | ||
140 | "vocabulary_id": null | 140 | "vocabulary_id": null | ||
141 | }, | 141 | }, | ||
142 | { | 142 | { | ||
143 | "display_name": "high-entropy oxide", | 143 | "display_name": "high-entropy oxide", | ||
144 | "id": "83af33cb-b7cd-4a63-86ec-1b227549f2d4", | 144 | "id": "83af33cb-b7cd-4a63-86ec-1b227549f2d4", | ||
145 | "name": "high-entropy oxide", | 145 | "name": "high-entropy oxide", | ||
146 | "state": "active", | 146 | "state": "active", | ||
147 | "vocabulary_id": null | 147 | "vocabulary_id": null | ||
148 | }, | 148 | }, | ||
149 | { | 149 | { | ||
150 | "display_name": "size effect", | 150 | "display_name": "size effect", | ||
151 | "id": "682be9b8-fc95-4245-b31f-6b5ff68921e3", | 151 | "id": "682be9b8-fc95-4245-b31f-6b5ff68921e3", | ||
152 | "name": "size effect", | 152 | "name": "size effect", | ||
153 | "state": "active", | 153 | "state": "active", | ||
154 | "vocabulary_id": null | 154 | "vocabulary_id": null | ||
155 | } | 155 | } | ||
156 | ], | 156 | ], | ||
157 | "title": "Synergy of cations in high entropy oxide lithium ion | 157 | "title": "Synergy of cations in high entropy oxide lithium ion | ||
158 | battery anode", | 158 | battery anode", | ||
159 | "type": "vdataset", | 159 | "type": "vdataset", | ||
160 | "url": "https://doi.org/10.35097/1415" | 160 | "url": "https://doi.org/10.35097/1415" | ||
161 | } | 161 | } |