Changes
On December 2, 2024 at 5:54:52 PM UTC, admin:
-
Changed title to COCO Dataset (previously COCO dataset)
-
Set author of COCO Dataset to Zanyar Zohourianshahzadi (previously Yuki Endo)
-
Updated description of COCO Dataset from
Text-to-image synthesis has achieved high-quality results with recent advances in diffusion models. However, text input alone has high spatial ambiguity and limited user controllability. Most existing methods allow spatial control through additional visual guidance (e.g., sketches and semantic masks) but require additional training with annotated images.
toThe COCO dataset is a large-scale dataset for object detection, semantic segmentation, and captioning. It contains 80 object categories and 1,000 image instances per category, with 330,000 images for training, 150,000 images for validation, and 150,000 images for testing.
-
Removed the following tags from COCO Dataset
- various objects
- image synthesis
- image colourising
- benchmark
- annotations
- distance estimation
- keypoints
- natural images
- coco
- images
- person instances
- image
- text-to-image generation
- Image-level recognition
- object segmentation
- human pose estimation
- Object detection
- segmentation
- Keypoint Detection
- Image Fusion
-
Added the following tags to COCO Dataset
-
Changed value of field
defined_in
tohttps://doi.org/10.48550/arXiv.1806.06422
in COCO Dataset -
Changed value of field
citation
to['https://doi.org/10.48550/arXiv.2311.08646', 'https://doi.org/10.48550/arXiv.2401.10229', 'https://doi.org/10.48550/arXiv.2105.11088', 'https://doi.org/10.48550/arXiv.2205.09949', 'https://doi.org/10.1109/HCCAI49649.2020.00009', 'https://doi.org/10.1145/3240508.3241916', 'https://doi.org/10.48550/arXiv.1903.06593', 'https://doi.org/10.48550/arXiv.2402.02555', 'https://doi.org/10.1080/08839514.2022.2032924', 'https://doi.org/10.48550/arXiv.1908.06837', 'https://doi.org/10.48550/arXiv.2108.09551', 'https://doi.org/10.48550/arXiv.2305.01165', 'https://doi.org/10.48550/arXiv.2404.19752', 'https://doi.org/10.48550/arXiv.2406.08074', 'https://doi.org/10.48550/arXiv.2211.05638']
in COCO Dataset -
Deleted resource Original Metadata from COCO Dataset
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
n | 3 | "author": "Yuki Endo", | n | 3 | "author": "Zanyar Zohourianshahzadi", |
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [ | 5 | "citation": [ | ||
n | 6 | "https://doi.org/10.1109/CVPR52688.2022.00303", | n | ||
7 | "https://doi.org/10.48550/arXiv.2004.05746", | ||||
8 | "https://doi.org/10.48550/arXiv.2402.08657", | ||||
9 | "https://doi.org/10.48550/arXiv.1904.13273", | ||||
10 | "https://doi.org/10.48550/arXiv.1703.06953", | ||||
11 | "https://doi.org/10.48550/arXiv.2401.01732", | ||||
12 | "https://doi.org/10.48550/arXiv.2007.14110", | ||||
13 | "https://doi.org/10.48550/arXiv.2104.13602", | ||||
14 | "https://doi.org/10.48550/arXiv.1908.07323", | ||||
15 | "https://doi.org/10.48550/arXiv.1803.08225", | ||||
16 | "https://doi.org/10.48550/arXiv.1809.09607", | ||||
17 | "https://doi.org/10.48550/arXiv.2312.04113", | 6 | "https://doi.org/10.48550/arXiv.2311.08646", | ||
18 | "https://doi.org/10.48550/arXiv.1705.07206", | ||||
19 | "https://doi.org/10.48550/arXiv.2209.12744", | ||||
20 | "https://doi.org/10.48550/arXiv.2402.14017", | ||||
21 | "https://doi.org/10.48550/arXiv.2308.06027", | ||||
22 | "https://doi.org/10.48550/arXiv.2105.11095", | ||||
23 | "https://doi.org/10.48550/arXiv.2306.17074", | ||||
24 | "https://doi.org/10.48550/arXiv.2401.10227" | 7 | "https://doi.org/10.48550/arXiv.2401.10229", | ||
8 | "https://doi.org/10.48550/arXiv.2105.11088", | ||||
9 | "https://doi.org/10.48550/arXiv.2205.09949", | ||||
10 | "https://doi.org/10.1109/HCCAI49649.2020.00009", | ||||
11 | "https://doi.org/10.1145/3240508.3241916", | ||||
12 | "https://doi.org/10.48550/arXiv.1903.06593", | ||||
13 | "https://doi.org/10.48550/arXiv.2402.02555", | ||||
14 | "https://doi.org/10.1080/08839514.2022.2032924", | ||||
15 | "https://doi.org/10.48550/arXiv.1908.06837", | ||||
16 | "https://doi.org/10.48550/arXiv.2108.09551", | ||||
17 | "https://doi.org/10.48550/arXiv.2305.01165", | ||||
18 | "https://doi.org/10.48550/arXiv.2404.19752", | ||||
19 | "https://doi.org/10.48550/arXiv.2406.08074", | ||||
20 | "https://doi.org/10.48550/arXiv.2211.05638" | ||||
25 | ], | 21 | ], | ||
26 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 22 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
n | 27 | "defined_in": "https://doi.org/10.48550/arXiv.2302.08113", | n | 23 | "defined_in": "https://doi.org/10.48550/arXiv.1806.06422", |
28 | "doi": "10.57702/h82873pp", | 24 | "doi": "10.57702/h82873pp", | ||
29 | "doi_date_published": "2024-12-02", | 25 | "doi_date_published": "2024-12-02", | ||
30 | "doi_publisher": "TIB", | 26 | "doi_publisher": "TIB", | ||
31 | "doi_status": true, | 27 | "doi_status": true, | ||
32 | "domain": "https://service.tib.eu/ldmservice", | 28 | "domain": "https://service.tib.eu/ldmservice", | ||
n | n | 29 | "extra_authors": [ | ||
30 | { | ||||
31 | "extra_author": "Jugal K. Kalita", | ||||
32 | "orcid": "" | ||||
33 | } | ||||
34 | ], | ||||
33 | "groups": [ | 35 | "groups": [ | ||
34 | { | 36 | { | ||
35 | "description": "", | 37 | "description": "", | ||
n | 36 | "display_name": "Computer Vision", | n | 38 | "display_name": "Captioning", |
37 | "id": "d09caf7c-26c7-4e4d-bb8e-49476a90ba25", | 39 | "id": "af3687a1-342e-4ec1-a12b-8437939b0ada", | ||
38 | "image_display_url": "", | 40 | "image_display_url": "", | ||
n | 39 | "name": "computer-vision", | n | 41 | "name": "captioning", |
40 | "title": "Computer Vision" | 42 | "title": "Captioning" | ||
41 | }, | 43 | }, | ||
42 | { | 44 | { | ||
43 | "description": "", | 45 | "description": "", | ||
n | 44 | "display_name": "Distance Estimation", | n | 46 | "display_name": "Grasp Planning", |
45 | "id": "2dc61880-b0a0-43b2-ab4d-036e82469940", | 47 | "id": "24f07758-0c6a-4efc-aeca-58ff029f0ea1", | ||
46 | "image_display_url": "", | 48 | "image_display_url": "", | ||
n | 47 | "name": "distance-estimation", | n | 49 | "name": "grasp-planning", |
48 | "title": "Distance Estimation" | 50 | "title": "Grasp Planning" | ||
49 | }, | 51 | }, | ||
50 | { | 52 | { | ||
51 | "description": "", | 53 | "description": "", | ||
n | 52 | "display_name": "Human Pose Estimation", | n | ||
53 | "id": "e880ba2e-3294-47ab-85b0-f66ba44b38bc", | ||||
54 | "image_display_url": "", | ||||
55 | "name": "human-pose-estimation", | ||||
56 | "title": "Human Pose Estimation" | ||||
57 | }, | ||||
58 | { | ||||
59 | "description": "", | ||||
60 | "display_name": "Image", | 54 | "display_name": "Image Annotation", | ||
61 | "id": "213b6d35-9140-4fc0-97b2-98383654173e", | 55 | "id": "0d7d1f08-f908-466b-a978-2ea0573fe19f", | ||
62 | "image_display_url": "", | 56 | "image_display_url": "", | ||
n | 63 | "name": "image", | n | 57 | "name": "image-annotation", |
64 | "title": "Image" | 58 | "title": "Image Annotation" | ||
59 | }, | ||||
60 | { | ||||
61 | "description": "", | ||||
62 | "display_name": "Image Captioning", | ||||
63 | "id": "7a76ce67-2607-4da9-a837-d2017dc33ec6", | ||||
64 | "image_display_url": "", | ||||
65 | "name": "image-captioning", | ||||
66 | "title": "Image Captioning" | ||||
65 | }, | 67 | }, | ||
66 | { | 68 | { | ||
67 | "description": "", | 69 | "description": "", | ||
68 | "display_name": "Image Classification", | 70 | "display_name": "Image Classification", | ||
69 | "id": "18b77292-26aa-4caf-89ed-cbd35fa60474", | 71 | "id": "18b77292-26aa-4caf-89ed-cbd35fa60474", | ||
70 | "image_display_url": "", | 72 | "image_display_url": "", | ||
71 | "name": "image-classification", | 73 | "name": "image-classification", | ||
72 | "title": "Image Classification" | 74 | "title": "Image Classification" | ||
73 | }, | 75 | }, | ||
74 | { | 76 | { | ||
75 | "description": "", | 77 | "description": "", | ||
n | 76 | "display_name": "Image Colourising", | n | 78 | "display_name": "Image De-fencing", |
77 | "id": "36478ef9-0b8d-4c6c-a63a-e489d0a66eb3", | 79 | "id": "cd4d5fc7-a6e0-4e80-a53d-10fba4fc6b1a", | ||
78 | "image_display_url": "", | 80 | "image_display_url": "", | ||
n | 79 | "name": "image-colourising", | n | 81 | "name": "image-de-fencing", |
80 | "title": "Image Colourising" | 82 | "title": "Image De-fencing" | ||
81 | }, | 83 | }, | ||
82 | { | 84 | { | ||
83 | "description": "", | 85 | "description": "", | ||
n | 84 | "display_name": "Image Fusion", | n | 86 | "display_name": "Image Generation", |
85 | "id": "c9c32661-d17f-4f6e-9894-5067c05e169e", | 87 | "id": "be25a76c-def1-4e73-8b1c-b81222d63867", | ||
86 | "image_display_url": "", | 88 | "image_display_url": "", | ||
n | 87 | "name": "image-fusion", | n | 89 | "name": "image-generation", |
88 | "title": "Image Fusion" | 90 | "title": "Image Generation" | ||
89 | }, | 91 | }, | ||
90 | { | 92 | { | ||
91 | "description": "", | 93 | "description": "", | ||
92 | "display_name": "Image Segmentation", | 94 | "display_name": "Image Segmentation", | ||
93 | "id": "7c8cc5f1-a9b2-4924-82ec-9e3aa3049a04", | 95 | "id": "7c8cc5f1-a9b2-4924-82ec-9e3aa3049a04", | ||
94 | "image_display_url": "", | 96 | "image_display_url": "", | ||
95 | "name": "image-segmentation", | 97 | "name": "image-segmentation", | ||
96 | "title": "Image Segmentation" | 98 | "title": "Image Segmentation" | ||
97 | }, | 99 | }, | ||
98 | { | 100 | { | ||
99 | "description": "", | 101 | "description": "", | ||
n | 100 | "display_name": "Image Synthesis", | n | ||
101 | "id": "8b89ca6b-96f7-439b-8045-febd38230620", | ||||
102 | "image_display_url": "", | ||||
103 | "name": "image-synthesis", | ||||
104 | "title": "Image Synthesis" | ||||
105 | }, | ||||
106 | { | ||||
107 | "description": "", | ||||
108 | "display_name": "Instance Segmentation", | 102 | "display_name": "Instance Segmentation", | ||
109 | "id": "f856527a-3d35-4c73-8c09-bf3f4a3bbb9f", | 103 | "id": "f856527a-3d35-4c73-8c09-bf3f4a3bbb9f", | ||
110 | "image_display_url": "", | 104 | "image_display_url": "", | ||
111 | "name": "instance-segmentation", | 105 | "name": "instance-segmentation", | ||
112 | "title": "Instance Segmentation" | 106 | "title": "Instance Segmentation" | ||
113 | }, | 107 | }, | ||
114 | { | 108 | { | ||
115 | "description": "", | 109 | "description": "", | ||
n | 116 | "display_name": "Keypoint Detection", | n | 110 | "display_name": "Object Classification", |
117 | "id": "67f02444-b264-4177-999f-2fd8d858d8a4", | 111 | "id": "06361be7-5f3f-4e76-a104-f4f908fa6d91", | ||
118 | "image_display_url": "", | 112 | "image_display_url": "", | ||
n | 119 | "name": "keypoint-detection", | n | 113 | "name": "object-classification", |
120 | "title": "Keypoint Detection" | 114 | "title": "Object Classification" | ||
121 | }, | 115 | }, | ||
122 | { | 116 | { | ||
123 | "description": "", | 117 | "description": "", | ||
124 | "display_name": "Object Detection", | 118 | "display_name": "Object Detection", | ||
125 | "id": "ca2cb1af-d31c-49b0-a1dd-62b22f2b9e20", | 119 | "id": "ca2cb1af-d31c-49b0-a1dd-62b22f2b9e20", | ||
126 | "image_display_url": "", | 120 | "image_display_url": "", | ||
127 | "name": "object-detection", | 121 | "name": "object-detection", | ||
128 | "title": "Object Detection" | 122 | "title": "Object Detection" | ||
129 | }, | 123 | }, | ||
130 | { | 124 | { | ||
131 | "description": "", | 125 | "description": "", | ||
n | 132 | "display_name": "Object Segmentation", | n | 126 | "display_name": "Semantic Segmentation", |
133 | "id": "da2dd0b7-d324-469d-92f8-0af74e1a1bae", | 127 | "id": "8c3f2eee-f5f9-464d-9c0a-1a5e7a925c0e", | ||
134 | "image_display_url": "", | 128 | "image_display_url": "", | ||
n | 135 | "name": "object-segmentation", | n | 129 | "name": "semantic-segmentation", |
136 | "title": "Object Segmentation" | 130 | "title": "Semantic Segmentation" | ||
137 | }, | ||||
138 | { | ||||
139 | "description": "", | ||||
140 | "display_name": "Text-to-Image Generation", | ||||
141 | "id": "ab1f94b9-0eb3-49c0-9b24-b6a4eaefbc90", | ||||
142 | "image_display_url": "", | ||||
143 | "name": "text-to-image-generation", | ||||
144 | "title": "Text-to-Image Generation" | ||||
145 | } | 131 | } | ||
146 | ], | 132 | ], | ||
147 | "id": "e1a5f7d1-3ba0-4647-bd41-b3b0834feba6", | 133 | "id": "e1a5f7d1-3ba0-4647-bd41-b3b0834feba6", | ||
148 | "isopen": false, | 134 | "isopen": false, | ||
149 | "landing_page": "https://cocodataset.org/", | 135 | "landing_page": "https://cocodataset.org/", | ||
150 | "license_title": null, | 136 | "license_title": null, | ||
151 | "link_orkg": "", | 137 | "link_orkg": "", | ||
152 | "metadata_created": "2024-12-02T17:46:37.889587", | 138 | "metadata_created": "2024-12-02T17:46:37.889587", | ||
n | 153 | "metadata_modified": "2024-12-02T17:46:38.334876", | n | 139 | "metadata_modified": "2024-12-02T17:54:51.869648", |
154 | "name": "coco-dataset", | 140 | "name": "coco-dataset", | ||
n | 155 | "notes": "Text-to-image synthesis has achieved high-quality results | n | 141 | "notes": "The COCO dataset is a large-scale dataset for object |
156 | with recent advances in diffusion models. However, text input alone | 142 | detection, semantic segmentation, and captioning. It contains 80 | ||
157 | has high spatial ambiguity and limited user controllability. Most | 143 | object categories and 1,000 image instances per category, with 330,000 | ||
158 | existing methods allow spatial control through additional visual | 144 | images for training, 150,000 images for validation, and 150,000 images | ||
159 | guidance (e.g., sketches and semantic masks) but require additional | 145 | for testing.", | ||
160 | training with annotated images.", | ||||
161 | "num_resources": 1, | 146 | "num_resources": 0, | ||
162 | "num_tags": 35, | 147 | "num_tags": 29, | ||
163 | "organization": { | 148 | "organization": { | ||
164 | "approval_status": "approved", | 149 | "approval_status": "approved", | ||
165 | "created": "2024-11-25T12:11:38.292601", | 150 | "created": "2024-11-25T12:11:38.292601", | ||
166 | "description": "", | 151 | "description": "", | ||
167 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 152 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
168 | "image_url": "", | 153 | "image_url": "", | ||
169 | "is_organization": true, | 154 | "is_organization": true, | ||
170 | "name": "no-organization", | 155 | "name": "no-organization", | ||
171 | "state": "active", | 156 | "state": "active", | ||
172 | "title": "No Organization", | 157 | "title": "No Organization", | ||
173 | "type": "organization" | 158 | "type": "organization" | ||
174 | }, | 159 | }, | ||
175 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 160 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
176 | "private": false, | 161 | "private": false, | ||
177 | "relationships_as_object": [], | 162 | "relationships_as_object": [], | ||
178 | "relationships_as_subject": [], | 163 | "relationships_as_subject": [], | ||
n | 179 | "resources": [ | n | 164 | "resources": [], |
180 | { | ||||
181 | "cache_last_updated": null, | ||||
182 | "cache_url": null, | ||||
183 | "created": "2024-12-02T18:38:42", | ||||
184 | "data": [ | ||||
185 | "dcterms:title", | ||||
186 | "dcterms:accessRights", | ||||
187 | "dcterms:creator", | ||||
188 | "dcterms:description", | ||||
189 | "dcterms:issued", | ||||
190 | "dcterms:language", | ||||
191 | "dcterms:identifier", | ||||
192 | "dcat:theme", | ||||
193 | "dcterms:type", | ||||
194 | "dcat:keyword", | ||||
195 | "dcat:landingPage", | ||||
196 | "dcterms:hasVersion", | ||||
197 | "dcterms:format", | ||||
198 | "mls:task", | ||||
199 | "datacite:isDescribedBy" | ||||
200 | ], | ||||
201 | "description": "The json representation of the dataset with its | ||||
202 | distributions based on DCAT.", | ||||
203 | "format": "JSON", | ||||
204 | "hash": "", | ||||
205 | "id": "3fd1b7b0-ab5e-479a-8439-f7d1e24c1c92", | ||||
206 | "last_modified": "2024-12-02T17:46:38.322887", | ||||
207 | "metadata_modified": "2024-12-02T17:46:38.337761", | ||||
208 | "mimetype": "application/json", | ||||
209 | "mimetype_inner": null, | ||||
210 | "name": "Original Metadata", | ||||
211 | "package_id": "e1a5f7d1-3ba0-4647-bd41-b3b0834feba6", | ||||
212 | "position": 0, | ||||
213 | "resource_type": null, | ||||
214 | "size": 2734, | ||||
215 | "state": "active", | ||||
216 | "url": | ||||
217 | resource/3fd1b7b0-ab5e-479a-8439-f7d1e24c1c92/download/metadata.json", | ||||
218 | "url_type": "upload" | ||||
219 | } | ||||
220 | ], | ||||
221 | "services_used_list": "", | 165 | "services_used_list": "", | ||
222 | "state": "active", | 166 | "state": "active", | ||
223 | "tags": [ | 167 | "tags": [ | ||
224 | { | 168 | { | ||
225 | "display_name": "COCO", | 169 | "display_name": "COCO", | ||
226 | "id": "892a6596-c332-4778-b0bb-a1d1046c3cb8", | 170 | "id": "892a6596-c332-4778-b0bb-a1d1046c3cb8", | ||
227 | "name": "COCO", | 171 | "name": "COCO", | ||
228 | "state": "active", | 172 | "state": "active", | ||
229 | "vocabulary_id": null | 173 | "vocabulary_id": null | ||
230 | }, | 174 | }, | ||
231 | { | 175 | { | ||
n | n | 176 | "display_name": "COCO Dataset", | ||
177 | "id": "501caec4-572d-4f1a-9cc1-1eb3363a8a53", | ||||
178 | "name": "COCO Dataset", | ||||
179 | "state": "active", | ||||
180 | "vocabulary_id": null | ||||
181 | }, | ||||
182 | { | ||||
232 | "display_name": "COCO dataset", | 183 | "display_name": "COCO dataset", | ||
233 | "id": "d3e1175b-c887-4a04-a77b-8ebe58dd7bd6", | 184 | "id": "d3e1175b-c887-4a04-a77b-8ebe58dd7bd6", | ||
234 | "name": "COCO dataset", | 185 | "name": "COCO dataset", | ||
235 | "state": "active", | 186 | "state": "active", | ||
236 | "vocabulary_id": null | 187 | "vocabulary_id": null | ||
237 | }, | 188 | }, | ||
238 | { | 189 | { | ||
239 | "display_name": "Deep Learning", | 190 | "display_name": "Deep Learning", | ||
240 | "id": "3feb7b21-e049-4dca-9372-0d438c483f6a", | 191 | "id": "3feb7b21-e049-4dca-9372-0d438c483f6a", | ||
241 | "name": "Deep Learning", | 192 | "name": "Deep Learning", | ||
242 | "state": "active", | 193 | "state": "active", | ||
243 | "vocabulary_id": null | 194 | "vocabulary_id": null | ||
244 | }, | 195 | }, | ||
245 | { | 196 | { | ||
n | n | 197 | "display_name": "Grasp Planning", | ||
198 | "id": "8e50f710-c23d-4280-a9c3-5c8a03d5711c", | ||||
199 | "name": "Grasp Planning", | ||||
200 | "state": "active", | ||||
201 | "vocabulary_id": null | ||||
202 | }, | ||||
203 | { | ||||
204 | "display_name": "Image Captioning", | ||||
205 | "id": "c708cba4-0a1f-45c9-826f-898857783343", | ||||
206 | "name": "Image Captioning", | ||||
207 | "state": "active", | ||||
208 | "vocabulary_id": null | ||||
209 | }, | ||||
210 | { | ||||
246 | "display_name": "Image Classification", | 211 | "display_name": "Image Classification", | ||
247 | "id": "418e2ddf-a1d3-42ac-ad05-156f79ca8e22", | 212 | "id": "418e2ddf-a1d3-42ac-ad05-156f79ca8e22", | ||
248 | "name": "Image Classification", | 213 | "name": "Image Classification", | ||
249 | "state": "active", | 214 | "state": "active", | ||
250 | "vocabulary_id": null | 215 | "vocabulary_id": null | ||
251 | }, | 216 | }, | ||
252 | { | 217 | { | ||
n | 253 | "display_name": "Image Fusion", | n | ||
254 | "id": "c75fe929-10c7-4e55-aeb3-9e7e31676545", | ||||
255 | "name": "Image Fusion", | ||||
256 | "state": "active", | ||||
257 | "vocabulary_id": null | ||||
258 | }, | ||||
259 | { | ||||
260 | "display_name": "Image Segmentation", | 218 | "display_name": "Image Segmentation", | ||
261 | "id": "f5603951-aef2-4539-8066-15e72f32271b", | 219 | "id": "f5603951-aef2-4539-8066-15e72f32271b", | ||
262 | "name": "Image Segmentation", | 220 | "name": "Image Segmentation", | ||
263 | "state": "active", | 221 | "state": "active", | ||
264 | "vocabulary_id": null | 222 | "vocabulary_id": null | ||
265 | }, | 223 | }, | ||
266 | { | 224 | { | ||
n | 267 | "display_name": "Image-level recognition", | n | ||
268 | "id": "8bc36159-161e-4ac8-ac11-79d0df3875eb", | ||||
269 | "name": "Image-level recognition", | ||||
270 | "state": "active", | ||||
271 | "vocabulary_id": null | ||||
272 | }, | ||||
273 | { | ||||
274 | "display_name": "Instance Segmentation", | 225 | "display_name": "Instance Segmentation", | ||
275 | "id": "b58d8dfe-1216-401d-8a2a-ceb09e07a013", | 226 | "id": "b58d8dfe-1216-401d-8a2a-ceb09e07a013", | ||
276 | "name": "Instance Segmentation", | 227 | "name": "Instance Segmentation", | ||
277 | "state": "active", | 228 | "state": "active", | ||
278 | "vocabulary_id": null | 229 | "vocabulary_id": null | ||
279 | }, | 230 | }, | ||
280 | { | 231 | { | ||
n | 281 | "display_name": "Keypoint Detection", | n | 232 | "display_name": "Mask R-CNN", |
282 | "id": "aa2c073b-d3df-4804-96e5-e732af5ecf8f", | 233 | "id": "f4a4e419-251d-4689-a71a-eacd1eba77fb", | ||
283 | "name": "Keypoint Detection", | 234 | "name": "Mask R-CNN", | ||
284 | "state": "active", | 235 | "state": "active", | ||
285 | "vocabulary_id": null | 236 | "vocabulary_id": null | ||
286 | }, | 237 | }, | ||
287 | { | 238 | { | ||
288 | "display_name": "Object Detection", | 239 | "display_name": "Object Detection", | ||
289 | "id": "44adc011-570b-46cf-9a65-ab72ca690477", | 240 | "id": "44adc011-570b-46cf-9a65-ab72ca690477", | ||
290 | "name": "Object Detection", | 241 | "name": "Object Detection", | ||
291 | "state": "active", | 242 | "state": "active", | ||
292 | "vocabulary_id": null | 243 | "vocabulary_id": null | ||
293 | }, | 244 | }, | ||
294 | { | 245 | { | ||
n | 295 | "display_name": "Object detection", | n | ||
296 | "id": "84a57b7d-e522-4fc2-9f65-9aeb121659f1", | ||||
297 | "name": "Object detection", | ||||
298 | "state": "active", | ||||
299 | "vocabulary_id": null | ||||
300 | }, | ||||
301 | { | ||||
302 | "display_name": "annotations", | 246 | "display_name": "Semantic Segmentation", | ||
303 | "id": "fa63f3d7-f283-4ea2-a1e4-284cdd881b1f", | 247 | "id": "809ad6af-28cd-43bd-974d-055a5c0f2973", | ||
304 | "name": "annotations", | 248 | "name": "Semantic Segmentation", | ||
305 | "state": "active", | ||||
306 | "vocabulary_id": null | ||||
307 | }, | ||||
308 | { | ||||
309 | "display_name": "benchmark", | ||||
310 | "id": "e3d4984e-822c-4023-a134-9cacabcfc36d", | ||||
311 | "name": "benchmark", | ||||
312 | "state": "active", | 249 | "state": "active", | ||
313 | "vocabulary_id": null | 250 | "vocabulary_id": null | ||
314 | }, | 251 | }, | ||
315 | { | 252 | { | ||
316 | "display_name": "bounding boxes", | 253 | "display_name": "bounding boxes", | ||
317 | "id": "54908a8b-6ff0-4302-bf30-6187778e8f6d", | 254 | "id": "54908a8b-6ff0-4302-bf30-6187778e8f6d", | ||
318 | "name": "bounding boxes", | 255 | "name": "bounding boxes", | ||
319 | "state": "active", | 256 | "state": "active", | ||
320 | "vocabulary_id": null | 257 | "vocabulary_id": null | ||
321 | }, | 258 | }, | ||
322 | { | 259 | { | ||
n | 323 | "display_name": "coco", | n | 260 | "display_name": "captioning", |
324 | "id": "7eb81be7-b293-4739-8f12-cd4d61804e64", | 261 | "id": "3995e3cf-7971-49bb-996b-225c79491e39", | ||
325 | "name": "coco", | 262 | "name": "captioning", | ||
326 | "state": "active", | 263 | "state": "active", | ||
327 | "vocabulary_id": null | 264 | "vocabulary_id": null | ||
328 | }, | 265 | }, | ||
329 | { | 266 | { | ||
330 | "display_name": "computer vision", | 267 | "display_name": "computer vision", | ||
331 | "id": "f650b4e3-9955-49b0-ba7b-2d302a990978", | 268 | "id": "f650b4e3-9955-49b0-ba7b-2d302a990978", | ||
332 | "name": "computer vision", | 269 | "name": "computer vision", | ||
333 | "state": "active", | 270 | "state": "active", | ||
334 | "vocabulary_id": null | 271 | "vocabulary_id": null | ||
335 | }, | 272 | }, | ||
336 | { | 273 | { | ||
n | 337 | "display_name": "distance estimation", | n | ||
338 | "id": "f0ac27e6-f05a-4816-bbce-07d891e31afd", | ||||
339 | "name": "distance estimation", | ||||
340 | "state": "active", | ||||
341 | "vocabulary_id": null | ||||
342 | }, | ||||
343 | { | ||||
344 | "display_name": "human pose estimation", | ||||
345 | "id": "2ba9bb7a-941e-4f02-8376-06b50691a7dd", | ||||
346 | "name": "human pose estimation", | ||||
347 | "state": "active", | ||||
348 | "vocabulary_id": null | ||||
349 | }, | ||||
350 | { | ||||
351 | "display_name": "image", | 274 | "display_name": "dataset", | ||
352 | "id": "2750bf30-5ae4-4ae8-bfef-5a168733376b", | 275 | "id": "ce5ad030-ca3d-47e6-abd1-5c92a2806f1b", | ||
353 | "name": "image", | 276 | "name": "dataset", | ||
354 | "state": "active", | 277 | "state": "active", | ||
355 | "vocabulary_id": null | 278 | "vocabulary_id": null | ||
356 | }, | 279 | }, | ||
357 | { | 280 | { | ||
358 | "display_name": "image annotation", | 281 | "display_name": "image annotation", | ||
359 | "id": "6734bcb9-ad78-4289-8816-09b71832ab8e", | 282 | "id": "6734bcb9-ad78-4289-8816-09b71832ab8e", | ||
360 | "name": "image annotation", | 283 | "name": "image annotation", | ||
361 | "state": "active", | 284 | "state": "active", | ||
362 | "vocabulary_id": null | 285 | "vocabulary_id": null | ||
363 | }, | 286 | }, | ||
364 | { | 287 | { | ||
n | n | 288 | "display_name": "image captioning", | ||
289 | "id": "f1bbe827-a03a-4280-b9fa-0599ccfc0541", | ||||
290 | "name": "image captioning", | ||||
291 | "state": "active", | ||||
292 | "vocabulary_id": null | ||||
293 | }, | ||||
294 | { | ||||
365 | "display_name": "image classification", | 295 | "display_name": "image classification", | ||
366 | "id": "34936550-ce1a-41b5-8c58-23081a6c673d", | 296 | "id": "34936550-ce1a-41b5-8c58-23081a6c673d", | ||
367 | "name": "image classification", | 297 | "name": "image classification", | ||
368 | "state": "active", | 298 | "state": "active", | ||
369 | "vocabulary_id": null | 299 | "vocabulary_id": null | ||
370 | }, | 300 | }, | ||
371 | { | 301 | { | ||
n | 372 | "display_name": "image colourising", | n | 302 | "display_name": "image de-fencing", |
373 | "id": "1cae9eb3-4634-4b51-b5d6-289a0d7b7288", | 303 | "id": "8ba43851-b8ba-4767-a7ee-e1070d23400d", | ||
374 | "name": "image colourising", | 304 | "name": "image de-fencing", | ||
305 | "state": "active", | ||||
306 | "vocabulary_id": null | ||||
307 | }, | ||||
308 | { | ||||
309 | "display_name": "image generation", | ||||
310 | "id": "96df81b4-32fd-4826-a903-affb005a0a60", | ||||
311 | "name": "image generation", | ||||
375 | "state": "active", | 312 | "state": "active", | ||
376 | "vocabulary_id": null | 313 | "vocabulary_id": null | ||
377 | }, | 314 | }, | ||
378 | { | 315 | { | ||
379 | "display_name": "image segmentation", | 316 | "display_name": "image segmentation", | ||
380 | "id": "7eaed78e-c73a-4929-a8c9-60265069f59a", | 317 | "id": "7eaed78e-c73a-4929-a8c9-60265069f59a", | ||
381 | "name": "image segmentation", | 318 | "name": "image segmentation", | ||
382 | "state": "active", | 319 | "state": "active", | ||
383 | "vocabulary_id": null | 320 | "vocabulary_id": null | ||
384 | }, | 321 | }, | ||
385 | { | 322 | { | ||
n | 386 | "display_name": "image synthesis", | n | ||
387 | "id": "c2b0a4a1-48f7-4f89-82b9-cd118596dfc5", | ||||
388 | "name": "image synthesis", | ||||
389 | "state": "active", | ||||
390 | "vocabulary_id": null | ||||
391 | }, | ||||
392 | { | ||||
393 | "display_name": "images", | ||||
394 | "id": "40152090-cbbf-4339-b7d3-f14b68cb7621", | ||||
395 | "name": "images", | ||||
396 | "state": "active", | ||||
397 | "vocabulary_id": null | ||||
398 | }, | ||||
399 | { | ||||
400 | "display_name": "instance segmentation", | 323 | "display_name": "instance segmentation", | ||
401 | "id": "e74e609d-6e81-4b83-b74e-fa3dd8f185f4", | 324 | "id": "e74e609d-6e81-4b83-b74e-fa3dd8f185f4", | ||
402 | "name": "instance segmentation", | 325 | "name": "instance segmentation", | ||
403 | "state": "active", | 326 | "state": "active", | ||
404 | "vocabulary_id": null | 327 | "vocabulary_id": null | ||
405 | }, | 328 | }, | ||
406 | { | 329 | { | ||
n | n | 330 | "display_name": "large-scale dataset", | ||
331 | "id": "a9c694bf-f591-4625-a20e-d53d3f90d489", | ||||
332 | "name": "large-scale dataset", | ||||
333 | "state": "active", | ||||
334 | "vocabulary_id": null | ||||
335 | }, | ||||
336 | { | ||||
407 | "display_name": "keypoints", | 337 | "display_name": "masks", | ||
408 | "id": "d8c2caaa-a318-4485-91a0-e9dc1826e52e", | 338 | "id": "4773378b-931e-4752-98dd-ecfdbd01ed89", | ||
409 | "name": "keypoints", | 339 | "name": "masks", | ||
410 | "state": "active", | 340 | "state": "active", | ||
411 | "vocabulary_id": null | 341 | "vocabulary_id": null | ||
412 | }, | 342 | }, | ||
413 | { | 343 | { | ||
n | 414 | "display_name": "natural images", | n | 344 | "display_name": "object classification", |
415 | "id": "20ae4758-7543-470f-8dc6-a950989d6516", | 345 | "id": "25b11f7f-115e-4d5b-b294-abacfd7e53c0", | ||
416 | "name": "natural images", | 346 | "name": "object classification", | ||
417 | "state": "active", | 347 | "state": "active", | ||
418 | "vocabulary_id": null | 348 | "vocabulary_id": null | ||
419 | }, | 349 | }, | ||
420 | { | 350 | { | ||
421 | "display_name": "object detection", | 351 | "display_name": "object detection", | ||
422 | "id": "607283c7-9e12-4167-9101-7f8078fb6537", | 352 | "id": "607283c7-9e12-4167-9101-7f8078fb6537", | ||
423 | "name": "object detection", | 353 | "name": "object detection", | ||
424 | "state": "active", | 354 | "state": "active", | ||
425 | "vocabulary_id": null | 355 | "vocabulary_id": null | ||
426 | }, | 356 | }, | ||
427 | { | 357 | { | ||
n | 428 | "display_name": "object segmentation", | n | ||
429 | "id": "6a47ecb7-e3fb-43a9-b0a8-1434387d3ee4", | ||||
430 | "name": "object segmentation", | ||||
431 | "state": "active", | ||||
432 | "vocabulary_id": null | ||||
433 | }, | ||||
434 | { | ||||
435 | "display_name": "panoptic segmentation", | 358 | "display_name": "panoptic segmentation", | ||
436 | "id": "fcac67e0-cdb8-4644-b28c-4d0361593beb", | 359 | "id": "fcac67e0-cdb8-4644-b28c-4d0361593beb", | ||
437 | "name": "panoptic segmentation", | 360 | "name": "panoptic segmentation", | ||
438 | "state": "active", | 361 | "state": "active", | ||
439 | "vocabulary_id": null | 362 | "vocabulary_id": null | ||
440 | }, | 363 | }, | ||
441 | { | 364 | { | ||
n | 442 | "display_name": "person instances", | n | ||
443 | "id": "a7d6551b-323a-4ae5-8ff3-faf093567fa4", | ||||
444 | "name": "person instances", | ||||
445 | "state": "active", | ||||
446 | "vocabulary_id": null | ||||
447 | }, | ||||
448 | { | ||||
449 | "display_name": "segmentation", | 365 | "display_name": "semantic segmentation", | ||
450 | "id": "7ce0e509-9f57-44c4-a015-f1ab9872bb44", | 366 | "id": "f9237911-e9df-4dd5-a9aa-301b6d4969af", | ||
451 | "name": "segmentation", | 367 | "name": "semantic segmentation", | ||
452 | "state": "active", | ||||
453 | "vocabulary_id": null | ||||
454 | }, | ||||
455 | { | ||||
456 | "display_name": "text-to-image generation", | ||||
457 | "id": "9c82c619-9160-475c-bb20-85ccff3b9061", | ||||
458 | "name": "text-to-image generation", | ||||
459 | "state": "active", | ||||
460 | "vocabulary_id": null | ||||
461 | }, | ||||
462 | { | ||||
463 | "display_name": "various objects", | ||||
464 | "id": "c227371b-3afa-4293-bf4f-a2116bd167fa", | ||||
465 | "name": "various objects", | ||||
466 | "state": "active", | 368 | "state": "active", | ||
467 | "vocabulary_id": null | 369 | "vocabulary_id": null | ||
468 | } | 370 | } | ||
469 | ], | 371 | ], | ||
t | 470 | "title": "COCO dataset", | t | 372 | "title": "COCO Dataset", |
471 | "type": "dataset", | 373 | "type": "dataset", | ||
472 | "version": "" | 374 | "version": "" | ||
473 | } | 375 | } |