Changes
On December 2, 2024 at 10:27:59 PM UTC, admin:
-
Changed title to CityScapes Dataset (previously Cityscapes Dataset)
-
Set author of CityScapes Dataset to M. Risqi (previously M. Cordts)
-
Updated description of CityScapes Dataset from
The Cityscapes dataset is a large-scale dataset for semantic segmentation. It contains 50 cities with 30,000 images for training, 20,000 images for validation, and 20,000 images for testing.
toThe CityScapes dataset is a comprehensive urban street scene understanding dataset and consists of a diverse set of stereo video sequences captured from 50 distinct cities under favorable weather conditions during daylight hours.
-
Removed the following tags from CityScapes Dataset
-
Added the following tags to CityScapes Dataset
-
Changed value of field
defined_in
tohttps://doi.org/10.48550/arXiv.2403.10971
in CityScapes Dataset -
Changed value of field
extra_authors
to[{'extra_author': 'U. Saputra', 'orcid': ''}, {'extra_author': 'A. Markham', 'orcid': ''}, {'extra_author': 'N. Trigoni', 'orcid': ''}]
in CityScapes Dataset -
Changed value of field
citation
to[]
in CityScapes Dataset -
Deleted resource Original Metadata from CityScapes Dataset
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
n | 3 | "author": "M. Cordts", | n | 3 | "author": "M. Risqi", |
4 | "author_email": "", | 4 | "author_email": "", | ||
n | 5 | "citation": [ | n | 5 | "citation": [], |
6 | "https://doi.org/10.48550/arXiv.2206.15083", | ||||
7 | "https://doi.org/10.48550/arXiv.2209.07088", | ||||
8 | "https://doi.org/10.48550/arXiv.1902.09080", | ||||
9 | "https://doi.org/10.48550/arXiv.2204.00822", | ||||
10 | "https://doi.org/10.1016/j.imavis.2017.01.009", | ||||
11 | "https://doi.org/10.1080/08839514.2022.2032924", | ||||
12 | "https://doi.org/10.1609/aaai.v38i7.28477", | ||||
13 | "https://doi.org/10.48550/arXiv.2310.01828" | ||||
14 | ], | ||||
15 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
n | 16 | "defined_in": "https://doi.org/10.48550/arXiv.2205.09949", | n | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2403.10971", |
17 | "doi": "10.57702/pflr6lo1", | 8 | "doi": "10.57702/pflr6lo1", | ||
18 | "doi_date_published": "2024-11-25", | 9 | "doi_date_published": "2024-11-25", | ||
19 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
20 | "doi_status": true, | 11 | "doi_status": true, | ||
21 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
22 | "extra_authors": [ | 13 | "extra_authors": [ | ||
23 | { | 14 | { | ||
n | 24 | "extra_author": "M. Omran", | n | 15 | "extra_author": "U. Saputra", |
25 | "orcid": "" | 16 | "orcid": "" | ||
26 | }, | 17 | }, | ||
27 | { | 18 | { | ||
n | 28 | "extra_author": "S. Ramos", | n | 19 | "extra_author": "A. Markham", |
29 | "orcid": "" | 20 | "orcid": "" | ||
30 | }, | 21 | }, | ||
31 | { | 22 | { | ||
n | 32 | "extra_author": "T. Rehfeld", | n | ||
33 | "orcid": "" | ||||
34 | }, | ||||
35 | { | ||||
36 | "extra_author": "M. Enzweiler", | ||||
37 | "orcid": "" | ||||
38 | }, | ||||
39 | { | ||||
40 | "extra_author": "R. Benenson", | ||||
41 | "orcid": "" | ||||
42 | }, | ||||
43 | { | ||||
44 | "extra_author": "U. Franke", | 23 | "extra_author": "N. Trigoni", | ||
45 | "orcid": "" | ||||
46 | }, | ||||
47 | { | ||||
48 | "extra_author": "S. Roth", | ||||
49 | "orcid": "" | ||||
50 | }, | ||||
51 | { | ||||
52 | "extra_author": "B. Schiele", | ||||
53 | "orcid": "" | 24 | "orcid": "" | ||
54 | } | 25 | } | ||
55 | ], | 26 | ], | ||
56 | "groups": [ | 27 | "groups": [ | ||
n | 57 | { | n | ||
58 | "description": "", | ||||
59 | "display_name": "Computer Vision", | ||||
60 | "id": "d09caf7c-26c7-4e4d-bb8e-49476a90ba25", | ||||
61 | "image_display_url": "", | ||||
62 | "name": "computer-vision", | ||||
63 | "title": "Computer Vision" | ||||
64 | }, | ||||
65 | { | 28 | { | ||
66 | "description": "", | 29 | "description": "", | ||
67 | "display_name": "Depth Estimation", | 30 | "display_name": "Depth Estimation", | ||
68 | "id": "1cfc3f7a-9b2f-4ee9-9d15-9883618b3218", | 31 | "id": "1cfc3f7a-9b2f-4ee9-9d15-9883618b3218", | ||
69 | "image_display_url": "", | 32 | "image_display_url": "", | ||
70 | "name": "depth-estimation", | 33 | "name": "depth-estimation", | ||
71 | "title": "Depth Estimation" | 34 | "title": "Depth Estimation" | ||
72 | }, | 35 | }, | ||
73 | { | 36 | { | ||
74 | "description": "", | 37 | "description": "", | ||
75 | "display_name": "Image Segmentation", | 38 | "display_name": "Image Segmentation", | ||
76 | "id": "7c8cc5f1-a9b2-4924-82ec-9e3aa3049a04", | 39 | "id": "7c8cc5f1-a9b2-4924-82ec-9e3aa3049a04", | ||
77 | "image_display_url": "", | 40 | "image_display_url": "", | ||
78 | "name": "image-segmentation", | 41 | "name": "image-segmentation", | ||
79 | "title": "Image Segmentation" | 42 | "title": "Image Segmentation" | ||
80 | }, | 43 | }, | ||
81 | { | 44 | { | ||
82 | "description": "", | 45 | "description": "", | ||
n | 83 | "display_name": "Self-Driving", | n | 46 | "display_name": "Urban Scene Segmentation", |
84 | "id": "966385dd-341d-4efb-b432-46db26b6f3a0", | 47 | "id": "5a3824da-1c75-4f49-9076-f1bc6902c26f", | ||
85 | "image_display_url": "", | 48 | "image_display_url": "", | ||
n | 86 | "name": "self-driving", | n | ||
87 | "title": "Self-Driving" | ||||
88 | }, | ||||
89 | { | ||||
90 | "description": "", | ||||
91 | "display_name": "Semantic Segmentation", | ||||
92 | "id": "8c3f2eee-f5f9-464d-9c0a-1a5e7a925c0e", | ||||
93 | "image_display_url": "", | ||||
94 | "name": "semantic-segmentation", | 49 | "name": "urban-scene-segmentation", | ||
95 | "title": "Semantic Segmentation" | 50 | "title": "Urban Scene Segmentation" | ||
96 | }, | ||||
97 | { | ||||
98 | "description": "", | ||||
99 | "display_name": "Semantic Urban Scene Understanding", | ||||
100 | "id": "85441903-1c5f-4410-8c09-2e8c208455bd", | ||||
101 | "image_display_url": "", | ||||
102 | "name": "semantic-urban-scene-understanding", | ||||
103 | "title": "Semantic Urban Scene Understanding" | ||||
104 | }, | ||||
105 | { | ||||
106 | "description": "", | ||||
107 | "display_name": "Urban Scene Dataset", | ||||
108 | "id": "579164dd-1b53-4bb6-8de9-4d30cbadea32", | ||||
109 | "image_display_url": "", | ||||
110 | "name": "urban-scene-dataset", | ||||
111 | "title": "Urban Scene Dataset" | ||||
112 | }, | ||||
113 | { | ||||
114 | "description": "", | ||||
115 | "display_name": "Urban Scenes", | ||||
116 | "id": "d7d4a119-6e09-4355-81f3-e828abe0adcc", | ||||
117 | "image_display_url": "", | ||||
118 | "name": "urban-scenes", | ||||
119 | "title": "Urban Scenes" | ||||
120 | }, | ||||
121 | { | ||||
122 | "description": "", | ||||
123 | "display_name": "Urban scene understanding", | ||||
124 | "id": "601c3276-8c2a-4bd4-b442-537ae54a4640", | ||||
125 | "image_display_url": "", | ||||
126 | "name": "urban-scene-understanding", | ||||
127 | "title": "Urban scene understanding" | ||||
128 | } | 51 | } | ||
129 | ], | 52 | ], | ||
130 | "id": "88aefb4d-5ed6-4ed7-a1ea-754e80a76aa4", | 53 | "id": "88aefb4d-5ed6-4ed7-a1ea-754e80a76aa4", | ||
131 | "isopen": false, | 54 | "isopen": false, | ||
132 | "landing_page": "https://www.cityscapes-dataset.com/", | 55 | "landing_page": "https://www.cityscapes-dataset.com/", | ||
133 | "license_title": null, | 56 | "license_title": null, | ||
134 | "link_orkg": "", | 57 | "link_orkg": "", | ||
135 | "metadata_created": "2024-11-25T14:56:38.104343", | 58 | "metadata_created": "2024-11-25T14:56:38.104343", | ||
n | 136 | "metadata_modified": "2024-12-02T18:01:26.421337", | n | 59 | "metadata_modified": "2024-12-02T22:27:58.855000", |
137 | "name": "cityscapes-dataset", | 60 | "name": "cityscapes-dataset", | ||
n | 138 | "notes": "The Cityscapes dataset is a large-scale dataset for | n | 61 | "notes": "The CityScapes dataset is a comprehensive urban street |
139 | semantic segmentation. It contains 50 cities with 30,000 images for | 62 | scene understanding dataset and consists of a diverse set of stereo | ||
140 | training, 20,000 images for validation, and 20,000 images for | 63 | video sequences captured from 50 distinct cities under favorable | ||
141 | testing.", | 64 | weather conditions during daylight hours.", | ||
142 | "num_resources": 1, | 65 | "num_resources": 0, | ||
143 | "num_tags": 17, | 66 | "num_tags": 6, | ||
144 | "organization": { | 67 | "organization": { | ||
145 | "approval_status": "approved", | 68 | "approval_status": "approved", | ||
146 | "created": "2024-11-25T12:11:38.292601", | 69 | "created": "2024-11-25T12:11:38.292601", | ||
147 | "description": "", | 70 | "description": "", | ||
148 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 71 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
149 | "image_url": "", | 72 | "image_url": "", | ||
150 | "is_organization": true, | 73 | "is_organization": true, | ||
151 | "name": "no-organization", | 74 | "name": "no-organization", | ||
152 | "state": "active", | 75 | "state": "active", | ||
153 | "title": "No Organization", | 76 | "title": "No Organization", | ||
154 | "type": "organization" | 77 | "type": "organization" | ||
155 | }, | 78 | }, | ||
156 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 79 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
157 | "private": false, | 80 | "private": false, | ||
158 | "relationships_as_object": [], | 81 | "relationships_as_object": [], | ||
159 | "relationships_as_subject": [], | 82 | "relationships_as_subject": [], | ||
n | 160 | "resources": [ | n | 83 | "resources": [], |
161 | { | ||||
162 | "cache_last_updated": null, | ||||
163 | "cache_url": null, | ||||
164 | "created": "2024-12-02T18:38:42", | ||||
165 | "data": [ | ||||
166 | "dcterms:title", | ||||
167 | "dcterms:accessRights", | ||||
168 | "dcterms:creator", | ||||
169 | "dcterms:description", | ||||
170 | "dcterms:issued", | ||||
171 | "dcterms:language", | ||||
172 | "dcterms:identifier", | ||||
173 | "dcat:theme", | ||||
174 | "dcterms:type", | ||||
175 | "dcat:keyword", | ||||
176 | "dcat:landingPage", | ||||
177 | "dcterms:hasVersion", | ||||
178 | "dcterms:format", | ||||
179 | "mls:task", | ||||
180 | "datacite:isDescribedBy" | ||||
181 | ], | ||||
182 | "description": "The json representation of the dataset with its | ||||
183 | distributions based on DCAT.", | ||||
184 | "format": "JSON", | ||||
185 | "hash": "", | ||||
186 | "id": "6252df07-ed35-4731-937e-8d6e9e4f64b1", | ||||
187 | "last_modified": "2024-12-02T18:01:26.411555", | ||||
188 | "metadata_modified": "2024-12-02T18:01:26.424209", | ||||
189 | "mimetype": "application/json", | ||||
190 | "mimetype_inner": null, | ||||
191 | "name": "Original Metadata", | ||||
192 | "package_id": "88aefb4d-5ed6-4ed7-a1ea-754e80a76aa4", | ||||
193 | "position": 0, | ||||
194 | "resource_type": null, | ||||
195 | "size": 1757, | ||||
196 | "state": "active", | ||||
197 | "url": | ||||
198 | resource/6252df07-ed35-4731-937e-8d6e9e4f64b1/download/metadata.json", | ||||
199 | "url_type": "upload" | ||||
200 | } | ||||
201 | ], | ||||
202 | "services_used_list": "", | 84 | "services_used_list": "", | ||
203 | "state": "active", | 85 | "state": "active", | ||
204 | "tags": [ | 86 | "tags": [ | ||
205 | { | 87 | { | ||
n | 206 | "display_name": "Cityscapes", | n | 88 | "display_name": "CityScapes", |
207 | "id": "3d213733-ec4f-4a3a-a5e3-8d7c8950c443", | 89 | "id": "e684557d-c12a-41a2-b37d-1375c8db0152", | ||
208 | "name": "Cityscapes", | 90 | "name": "CityScapes", | ||
209 | "state": "active", | ||||
210 | "vocabulary_id": null | ||||
211 | }, | ||||
212 | { | ||||
213 | "display_name": "Image Dataset", | ||||
214 | "id": "51aed645-6dd9-4e08-894a-10944ecefd8b", | ||||
215 | "name": "Image Dataset", | ||||
216 | "state": "active", | ||||
217 | "vocabulary_id": null | ||||
218 | }, | ||||
219 | { | ||||
220 | "display_name": "Image Segmentation", | ||||
221 | "id": "f5603951-aef2-4539-8066-15e72f32271b", | ||||
222 | "name": "Image Segmentation", | ||||
223 | "state": "active", | ||||
224 | "vocabulary_id": null | ||||
225 | }, | ||||
226 | { | ||||
227 | "display_name": "Object Detection", | ||||
228 | "id": "44adc011-570b-46cf-9a65-ab72ca690477", | ||||
229 | "name": "Object Detection", | ||||
230 | "state": "active", | 91 | "state": "active", | ||
231 | "vocabulary_id": null | 92 | "vocabulary_id": null | ||
232 | }, | 93 | }, | ||
233 | { | 94 | { | ||
234 | "display_name": "Semantic Segmentation", | 95 | "display_name": "Semantic Segmentation", | ||
235 | "id": "809ad6af-28cd-43bd-974d-055a5c0f2973", | 96 | "id": "809ad6af-28cd-43bd-974d-055a5c0f2973", | ||
236 | "name": "Semantic Segmentation", | 97 | "name": "Semantic Segmentation", | ||
237 | "state": "active", | 98 | "state": "active", | ||
238 | "vocabulary_id": null | 99 | "vocabulary_id": null | ||
239 | }, | 100 | }, | ||
240 | { | 101 | { | ||
241 | "display_name": "Urban Scene", | 102 | "display_name": "Urban Scene", | ||
242 | "id": "8e947422-d2b1-49ea-9b18-87781c722b5b", | 103 | "id": "8e947422-d2b1-49ea-9b18-87781c722b5b", | ||
243 | "name": "Urban Scene", | 104 | "name": "Urban Scene", | ||
244 | "state": "active", | 105 | "state": "active", | ||
245 | "vocabulary_id": null | 106 | "vocabulary_id": null | ||
246 | }, | 107 | }, | ||
247 | { | 108 | { | ||
n | 248 | "display_name": "Urban Scenes", | n | 109 | "display_name": "Urban Scene Understanding", |
249 | "id": "1603e31b-58cc-4575-9b56-ea49b2226464", | 110 | "id": "5722d073-797c-442b-a53f-1e3e29afeba4", | ||
250 | "name": "Urban Scenes", | 111 | "name": "Urban Scene Understanding", | ||
251 | "state": "active", | 112 | "state": "active", | ||
252 | "vocabulary_id": null | 113 | "vocabulary_id": null | ||
253 | }, | 114 | }, | ||
254 | { | 115 | { | ||
n | 255 | "display_name": "cityscapes", | n | 116 | "display_name": "depth estimation", |
256 | "id": "41166d82-c1cf-44c8-9b5d-5b2945882ee8", | 117 | "id": "3c08a798-cec3-4682-a668-4f95d6d8ad18", | ||
257 | "name": "cityscapes", | 118 | "name": "depth estimation", | ||
258 | "state": "active", | ||||
259 | "vocabulary_id": null | ||||
260 | }, | ||||
261 | { | ||||
262 | "display_name": "cityscapes dataset", | ||||
263 | "id": "1c8608cf-c5cc-457e-99a0-7475389f5e60", | ||||
264 | "name": "cityscapes dataset", | ||||
265 | "state": "active", | ||||
266 | "vocabulary_id": null | ||||
267 | }, | ||||
268 | { | ||||
269 | "display_name": "image classification", | ||||
270 | "id": "34936550-ce1a-41b5-8c58-23081a6c673d", | ||||
271 | "name": "image classification", | ||||
272 | "state": "active", | 119 | "state": "active", | ||
273 | "vocabulary_id": null | 120 | "vocabulary_id": null | ||
274 | }, | 121 | }, | ||
275 | { | 122 | { | ||
276 | "display_name": "image segmentation", | 123 | "display_name": "image segmentation", | ||
277 | "id": "7eaed78e-c73a-4929-a8c9-60265069f59a", | 124 | "id": "7eaed78e-c73a-4929-a8c9-60265069f59a", | ||
278 | "name": "image segmentation", | 125 | "name": "image segmentation", | ||
279 | "state": "active", | 126 | "state": "active", | ||
280 | "vocabulary_id": null | 127 | "vocabulary_id": null | ||
n | 281 | }, | n | ||
282 | { | ||||
283 | "display_name": "monocular depth estimation", | ||||
284 | "id": "b343d8bd-6834-4c6b-a622-fa7a08feacfd", | ||||
285 | "name": "monocular depth estimation", | ||||
286 | "state": "active", | ||||
287 | "vocabulary_id": null | ||||
288 | }, | ||||
289 | { | ||||
290 | "display_name": "semantic segmentation", | ||||
291 | "id": "f9237911-e9df-4dd5-a9aa-301b6d4969af", | ||||
292 | "name": "semantic segmentation", | ||||
293 | "state": "active", | ||||
294 | "vocabulary_id": null | ||||
295 | }, | ||||
296 | { | ||||
297 | "display_name": "semantic urban scene understanding", | ||||
298 | "id": "4ff85e5b-32f6-4cd2-bd77-73be2ee85f34", | ||||
299 | "name": "semantic urban scene understanding", | ||||
300 | "state": "active", | ||||
301 | "vocabulary_id": null | ||||
302 | }, | ||||
303 | { | ||||
304 | "display_name": "stereo vision", | ||||
305 | "id": "22b94dc4-4734-4b39-93d2-5a13a3f50084", | ||||
306 | "name": "stereo vision", | ||||
307 | "state": "active", | ||||
308 | "vocabulary_id": null | ||||
309 | }, | ||||
310 | { | ||||
311 | "display_name": "urban scene understanding", | ||||
312 | "id": "75efbe43-3b7b-41bf-8983-b6fc5cb0b569", | ||||
313 | "name": "urban scene understanding", | ||||
314 | "state": "active", | ||||
315 | "vocabulary_id": null | ||||
316 | }, | ||||
317 | { | ||||
318 | "display_name": "urban scenes", | ||||
319 | "id": "e4298c72-6483-4627-8b7f-743733990c13", | ||||
320 | "name": "urban scenes", | ||||
321 | "state": "active", | ||||
322 | "vocabulary_id": null | ||||
323 | } | 128 | } | ||
324 | ], | 129 | ], | ||
t | 325 | "title": "Cityscapes Dataset", | t | 130 | "title": "CityScapes Dataset", |
326 | "type": "dataset", | 131 | "type": "dataset", | ||
327 | "version": "" | 132 | "version": "" | ||
328 | } | 133 | } |