Changes
On December 2, 2024 at 6:12:11 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in ScanNet Dataset -
Changed value of field
doi_date_published
to2024-12-02
in ScanNet Dataset -
Added resource Original Metadata to ScanNet Dataset
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Rui Yu", | 3 | "author": "Rui Yu", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [ | 5 | "citation": [ | ||
6 | "https://doi.org/10.48550/arXiv.2402.09944", | 6 | "https://doi.org/10.48550/arXiv.2402.09944", | ||
7 | "https://doi.org/10.48550/arXiv.2309.13240" | 7 | "https://doi.org/10.48550/arXiv.2309.13240" | ||
8 | ], | 8 | ], | ||
9 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 9 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
10 | "defined_in": "https://doi.org/10.48550/arXiv.1911.11763", | 10 | "defined_in": "https://doi.org/10.48550/arXiv.1911.11763", | ||
11 | "doi": "10.57702/6qois3kh", | 11 | "doi": "10.57702/6qois3kh", | ||
n | 12 | "doi_date_published": null, | n | 12 | "doi_date_published": "2024-12-02", |
13 | "doi_publisher": "TIB", | 13 | "doi_publisher": "TIB", | ||
n | 14 | "doi_status": false, | n | 14 | "doi_status": true, |
15 | "domain": "https://service.tib.eu/ldmservice", | 15 | "domain": "https://service.tib.eu/ldmservice", | ||
16 | "extra_authors": [ | 16 | "extra_authors": [ | ||
17 | { | 17 | { | ||
18 | "extra_author": "Jiachen Liu", | 18 | "extra_author": "Jiachen Liu", | ||
19 | "orcid": "" | 19 | "orcid": "" | ||
20 | }, | 20 | }, | ||
21 | { | 21 | { | ||
22 | "extra_author": "Zihan Zhou", | 22 | "extra_author": "Zihan Zhou", | ||
23 | "orcid": "" | 23 | "orcid": "" | ||
24 | }, | 24 | }, | ||
25 | { | 25 | { | ||
26 | "extra_author": "Sharon X. Huang", | 26 | "extra_author": "Sharon X. Huang", | ||
27 | "orcid": "" | 27 | "orcid": "" | ||
28 | } | 28 | } | ||
29 | ], | 29 | ], | ||
30 | "groups": [ | 30 | "groups": [ | ||
31 | { | 31 | { | ||
32 | "description": "", | 32 | "description": "", | ||
33 | "display_name": "3D Reconstruction", | 33 | "display_name": "3D Reconstruction", | ||
34 | "id": "4f8c7487-ad74-48b5-af62-efc1369527f9", | 34 | "id": "4f8c7487-ad74-48b5-af62-efc1369527f9", | ||
35 | "image_display_url": "", | 35 | "image_display_url": "", | ||
36 | "name": "3d-reconstruction", | 36 | "name": "3d-reconstruction", | ||
37 | "title": "3D Reconstruction" | 37 | "title": "3D Reconstruction" | ||
38 | }, | 38 | }, | ||
39 | { | 39 | { | ||
40 | "description": "", | 40 | "description": "", | ||
41 | "display_name": "Computer Vision", | 41 | "display_name": "Computer Vision", | ||
42 | "id": "d09caf7c-26c7-4e4d-bb8e-49476a90ba25", | 42 | "id": "d09caf7c-26c7-4e4d-bb8e-49476a90ba25", | ||
43 | "image_display_url": "", | 43 | "image_display_url": "", | ||
44 | "name": "computer-vision", | 44 | "name": "computer-vision", | ||
45 | "title": "Computer Vision" | 45 | "title": "Computer Vision" | ||
46 | }, | 46 | }, | ||
47 | { | 47 | { | ||
48 | "description": "", | 48 | "description": "", | ||
49 | "display_name": "Indoor Scene Reconstruction", | 49 | "display_name": "Indoor Scene Reconstruction", | ||
50 | "id": "91936444-bc66-44e6-9a35-790c6130c384", | 50 | "id": "91936444-bc66-44e6-9a35-790c6130c384", | ||
51 | "image_display_url": "", | 51 | "image_display_url": "", | ||
52 | "name": "indoor-scene-reconstruction", | 52 | "name": "indoor-scene-reconstruction", | ||
53 | "title": "Indoor Scene Reconstruction" | 53 | "title": "Indoor Scene Reconstruction" | ||
54 | }, | 54 | }, | ||
55 | { | 55 | { | ||
56 | "description": "", | 56 | "description": "", | ||
57 | "display_name": "Indoor Scene Understanding", | 57 | "display_name": "Indoor Scene Understanding", | ||
58 | "id": "6f671b4b-0b4d-4fe1-9769-e31ab164e205", | 58 | "id": "6f671b4b-0b4d-4fe1-9769-e31ab164e205", | ||
59 | "image_display_url": "", | 59 | "image_display_url": "", | ||
60 | "name": "indoor-scene-understanding", | 60 | "name": "indoor-scene-understanding", | ||
61 | "title": "Indoor Scene Understanding" | 61 | "title": "Indoor Scene Understanding" | ||
62 | }, | 62 | }, | ||
63 | { | 63 | { | ||
64 | "description": "", | 64 | "description": "", | ||
65 | "display_name": "Indoor Scenes", | 65 | "display_name": "Indoor Scenes", | ||
66 | "id": "1cdde29d-6358-4f23-823c-0e7caad9ae2e", | 66 | "id": "1cdde29d-6358-4f23-823c-0e7caad9ae2e", | ||
67 | "image_display_url": "", | 67 | "image_display_url": "", | ||
68 | "name": "indoor-scenes", | 68 | "name": "indoor-scenes", | ||
69 | "title": "Indoor Scenes" | 69 | "title": "Indoor Scenes" | ||
70 | }, | 70 | }, | ||
71 | { | 71 | { | ||
72 | "description": "", | 72 | "description": "", | ||
73 | "display_name": "Semantic Segmentation", | 73 | "display_name": "Semantic Segmentation", | ||
74 | "id": "8c3f2eee-f5f9-464d-9c0a-1a5e7a925c0e", | 74 | "id": "8c3f2eee-f5f9-464d-9c0a-1a5e7a925c0e", | ||
75 | "image_display_url": "", | 75 | "image_display_url": "", | ||
76 | "name": "semantic-segmentation", | 76 | "name": "semantic-segmentation", | ||
77 | "title": "Semantic Segmentation" | 77 | "title": "Semantic Segmentation" | ||
78 | } | 78 | } | ||
79 | ], | 79 | ], | ||
80 | "id": "4540e971-fec0-4977-9c01-265c6a952e62", | 80 | "id": "4540e971-fec0-4977-9c01-265c6a952e62", | ||
81 | "isopen": false, | 81 | "isopen": false, | ||
82 | "landing_page": "https://isl.org/scan-net-dataset/", | 82 | "landing_page": "https://isl.org/scan-net-dataset/", | ||
83 | "license_title": null, | 83 | "license_title": null, | ||
84 | "link_orkg": "", | 84 | "link_orkg": "", | ||
85 | "metadata_created": "2024-12-02T18:12:09.825399", | 85 | "metadata_created": "2024-12-02T18:12:09.825399", | ||
n | 86 | "metadata_modified": "2024-12-02T18:12:09.825405", | n | 86 | "metadata_modified": "2024-12-02T18:12:10.187442", |
87 | "name": "scannet-dataset", | 87 | "name": "scannet-dataset", | ||
88 | "notes": "The ScanNet dataset is a large-scale indoor dataset | 88 | "notes": "The ScanNet dataset is a large-scale indoor dataset | ||
89 | composed of monocular sequences with ground truth poses and depth | 89 | composed of monocular sequences with ground truth poses and depth | ||
90 | images.", | 90 | images.", | ||
n | 91 | "num_resources": 0, | n | 91 | "num_resources": 1, |
92 | "num_tags": 9, | 92 | "num_tags": 9, | ||
93 | "organization": { | 93 | "organization": { | ||
94 | "approval_status": "approved", | 94 | "approval_status": "approved", | ||
95 | "created": "2024-11-25T12:11:38.292601", | 95 | "created": "2024-11-25T12:11:38.292601", | ||
96 | "description": "", | 96 | "description": "", | ||
97 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 97 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
98 | "image_url": "", | 98 | "image_url": "", | ||
99 | "is_organization": true, | 99 | "is_organization": true, | ||
100 | "name": "no-organization", | 100 | "name": "no-organization", | ||
101 | "state": "active", | 101 | "state": "active", | ||
102 | "title": "No Organization", | 102 | "title": "No Organization", | ||
103 | "type": "organization" | 103 | "type": "organization" | ||
104 | }, | 104 | }, | ||
105 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 105 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
106 | "private": false, | 106 | "private": false, | ||
107 | "relationships_as_object": [], | 107 | "relationships_as_object": [], | ||
108 | "relationships_as_subject": [], | 108 | "relationships_as_subject": [], | ||
t | 109 | "resources": [], | t | 109 | "resources": [ |
110 | { | ||||
111 | "cache_last_updated": null, | ||||
112 | "cache_url": null, | ||||
113 | "created": "2024-12-02T18:38:42", | ||||
114 | "data": [ | ||||
115 | "dcterms:title", | ||||
116 | "dcterms:accessRights", | ||||
117 | "dcterms:creator", | ||||
118 | "dcterms:description", | ||||
119 | "dcterms:issued", | ||||
120 | "dcterms:language", | ||||
121 | "dcterms:identifier", | ||||
122 | "dcat:theme", | ||||
123 | "dcterms:type", | ||||
124 | "dcat:keyword", | ||||
125 | "dcat:landingPage", | ||||
126 | "dcterms:hasVersion", | ||||
127 | "dcterms:format", | ||||
128 | "mls:task", | ||||
129 | "datacite:isDescribedBy" | ||||
130 | ], | ||||
131 | "description": "The json representation of the dataset with its | ||||
132 | distributions based on DCAT.", | ||||
133 | "format": "JSON", | ||||
134 | "hash": "", | ||||
135 | "id": "8c5ac661-82e1-4c04-8493-cc20f8f434bb", | ||||
136 | "last_modified": "2024-12-02T18:12:10.179164", | ||||
137 | "metadata_modified": "2024-12-02T18:12:10.190249", | ||||
138 | "mimetype": "application/json", | ||||
139 | "mimetype_inner": null, | ||||
140 | "name": "Original Metadata", | ||||
141 | "package_id": "4540e971-fec0-4977-9c01-265c6a952e62", | ||||
142 | "position": 0, | ||||
143 | "resource_type": null, | ||||
144 | "size": 1206, | ||||
145 | "state": "active", | ||||
146 | "url": | ||||
147 | resource/8c5ac661-82e1-4c04-8493-cc20f8f434bb/download/metadata.json", | ||||
148 | "url_type": "upload" | ||||
149 | } | ||||
150 | ], | ||||
110 | "services_used_list": "", | 151 | "services_used_list": "", | ||
111 | "state": "active", | 152 | "state": "active", | ||
112 | "tags": [ | 153 | "tags": [ | ||
113 | { | 154 | { | ||
114 | "display_name": "3D Reconstruction", | 155 | "display_name": "3D Reconstruction", | ||
115 | "id": "4473ef66-a566-4165-a64e-4f56362435fb", | 156 | "id": "4473ef66-a566-4165-a64e-4f56362435fb", | ||
116 | "name": "3D Reconstruction", | 157 | "name": "3D Reconstruction", | ||
117 | "state": "active", | 158 | "state": "active", | ||
118 | "vocabulary_id": null | 159 | "vocabulary_id": null | ||
119 | }, | 160 | }, | ||
120 | { | 161 | { | ||
121 | "display_name": "Computer Vision", | 162 | "display_name": "Computer Vision", | ||
122 | "id": "77b96eda-8a43-406f-9c54-d87b14f3f63e", | 163 | "id": "77b96eda-8a43-406f-9c54-d87b14f3f63e", | ||
123 | "name": "Computer Vision", | 164 | "name": "Computer Vision", | ||
124 | "state": "active", | 165 | "state": "active", | ||
125 | "vocabulary_id": null | 166 | "vocabulary_id": null | ||
126 | }, | 167 | }, | ||
127 | { | 168 | { | ||
128 | "display_name": "Indoor Scene", | 169 | "display_name": "Indoor Scene", | ||
129 | "id": "883d8d96-9c1f-41fa-98bc-34cffcf5ea00", | 170 | "id": "883d8d96-9c1f-41fa-98bc-34cffcf5ea00", | ||
130 | "name": "Indoor Scene", | 171 | "name": "Indoor Scene", | ||
131 | "state": "active", | 172 | "state": "active", | ||
132 | "vocabulary_id": null | 173 | "vocabulary_id": null | ||
133 | }, | 174 | }, | ||
134 | { | 175 | { | ||
135 | "display_name": "Indoor Scene Reconstruction", | 176 | "display_name": "Indoor Scene Reconstruction", | ||
136 | "id": "bf81eb22-218e-48ab-beab-561bb9b92a79", | 177 | "id": "bf81eb22-218e-48ab-beab-561bb9b92a79", | ||
137 | "name": "Indoor Scene Reconstruction", | 178 | "name": "Indoor Scene Reconstruction", | ||
138 | "state": "active", | 179 | "state": "active", | ||
139 | "vocabulary_id": null | 180 | "vocabulary_id": null | ||
140 | }, | 181 | }, | ||
141 | { | 182 | { | ||
142 | "display_name": "Indoor Scenes", | 183 | "display_name": "Indoor Scenes", | ||
143 | "id": "347c5737-e536-45b4-8044-796b0a7dc8f4", | 184 | "id": "347c5737-e536-45b4-8044-796b0a7dc8f4", | ||
144 | "name": "Indoor Scenes", | 185 | "name": "Indoor Scenes", | ||
145 | "state": "active", | 186 | "state": "active", | ||
146 | "vocabulary_id": null | 187 | "vocabulary_id": null | ||
147 | }, | 188 | }, | ||
148 | { | 189 | { | ||
149 | "display_name": "Semantic Segmentation", | 190 | "display_name": "Semantic Segmentation", | ||
150 | "id": "809ad6af-28cd-43bd-974d-055a5c0f2973", | 191 | "id": "809ad6af-28cd-43bd-974d-055a5c0f2973", | ||
151 | "name": "Semantic Segmentation", | 192 | "name": "Semantic Segmentation", | ||
152 | "state": "active", | 193 | "state": "active", | ||
153 | "vocabulary_id": null | 194 | "vocabulary_id": null | ||
154 | }, | 195 | }, | ||
155 | { | 196 | { | ||
156 | "display_name": "depth estimation", | 197 | "display_name": "depth estimation", | ||
157 | "id": "3c08a798-cec3-4682-a668-4f95d6d8ad18", | 198 | "id": "3c08a798-cec3-4682-a668-4f95d6d8ad18", | ||
158 | "name": "depth estimation", | 199 | "name": "depth estimation", | ||
159 | "state": "active", | 200 | "state": "active", | ||
160 | "vocabulary_id": null | 201 | "vocabulary_id": null | ||
161 | }, | 202 | }, | ||
162 | { | 203 | { | ||
163 | "display_name": "indoor scene understanding", | 204 | "display_name": "indoor scene understanding", | ||
164 | "id": "09081b59-cdf6-41ee-9ce4-939ea1045586", | 205 | "id": "09081b59-cdf6-41ee-9ce4-939ea1045586", | ||
165 | "name": "indoor scene understanding", | 206 | "name": "indoor scene understanding", | ||
166 | "state": "active", | 207 | "state": "active", | ||
167 | "vocabulary_id": null | 208 | "vocabulary_id": null | ||
168 | }, | 209 | }, | ||
169 | { | 210 | { | ||
170 | "display_name": "monocular vision", | 211 | "display_name": "monocular vision", | ||
171 | "id": "4a1b42c2-bc18-4b0f-bbf3-5c453bebed3b", | 212 | "id": "4a1b42c2-bc18-4b0f-bbf3-5c453bebed3b", | ||
172 | "name": "monocular vision", | 213 | "name": "monocular vision", | ||
173 | "state": "active", | 214 | "state": "active", | ||
174 | "vocabulary_id": null | 215 | "vocabulary_id": null | ||
175 | } | 216 | } | ||
176 | ], | 217 | ], | ||
177 | "title": "ScanNet Dataset", | 218 | "title": "ScanNet Dataset", | ||
178 | "type": "dataset", | 219 | "type": "dataset", | ||
179 | "version": "" | 220 | "version": "" | ||
180 | } | 221 | } |