Changes
On December 2, 2024 at 9:33:12 PM UTC, admin:
-
Changed value of field
doi_status
toTrue
in Multi-View Brain HyperConnectome -
Changed value of field
doi_date_published
to2024-12-02
in Multi-View Brain HyperConnectome -
Added resource Original Metadata to Multi-View Brain HyperConnectome
f | 1 | { | f | 1 | { |
2 | "access_rights": "", | 2 | "access_rights": "", | ||
3 | "author": "Alin Banka", | 3 | "author": "Alin Banka", | ||
4 | "author_email": "", | 4 | "author_email": "", | ||
5 | "citation": [], | 5 | "citation": [], | ||
6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | 6 | "creator_user_id": "17755db4-395a-4b3b-ac09-e8e3484ca700", | ||
7 | "defined_in": "https://doi.org/10.48550/arXiv.2009.11553", | 7 | "defined_in": "https://doi.org/10.48550/arXiv.2009.11553", | ||
8 | "doi": "10.57702/09l1pa8w", | 8 | "doi": "10.57702/09l1pa8w", | ||
n | 9 | "doi_date_published": null, | n | 9 | "doi_date_published": "2024-12-02", |
10 | "doi_publisher": "TIB", | 10 | "doi_publisher": "TIB", | ||
n | 11 | "doi_status": false, | n | 11 | "doi_status": true, |
12 | "domain": "https://service.tib.eu/ldmservice", | 12 | "domain": "https://service.tib.eu/ldmservice", | ||
13 | "extra_authors": [ | 13 | "extra_authors": [ | ||
14 | { | 14 | { | ||
15 | "extra_author": "Inis Buzi", | 15 | "extra_author": "Inis Buzi", | ||
16 | "orcid": "" | 16 | "orcid": "" | ||
17 | }, | 17 | }, | ||
18 | { | 18 | { | ||
19 | "extra_author": "Islem Rekik", | 19 | "extra_author": "Islem Rekik", | ||
20 | "orcid": "" | 20 | "orcid": "" | ||
21 | } | 21 | } | ||
22 | ], | 22 | ], | ||
23 | "groups": [ | 23 | "groups": [ | ||
24 | { | 24 | { | ||
25 | "description": "", | 25 | "description": "", | ||
26 | "display_name": "Brain HyperConnectome", | 26 | "display_name": "Brain HyperConnectome", | ||
27 | "id": "15cb9c15-b9a3-4835-ac58-d2069bc3508e", | 27 | "id": "15cb9c15-b9a3-4835-ac58-d2069bc3508e", | ||
28 | "image_display_url": "", | 28 | "image_display_url": "", | ||
29 | "name": "brain-hyperconnectome", | 29 | "name": "brain-hyperconnectome", | ||
30 | "title": "Brain HyperConnectome" | 30 | "title": "Brain HyperConnectome" | ||
31 | }, | 31 | }, | ||
32 | { | 32 | { | ||
33 | "description": "", | 33 | "description": "", | ||
34 | "display_name": "Multi-View Brain Networks", | 34 | "display_name": "Multi-View Brain Networks", | ||
35 | "id": "05b8e27d-9640-463c-997a-a80d7d7504f2", | 35 | "id": "05b8e27d-9640-463c-997a-a80d7d7504f2", | ||
36 | "image_display_url": "", | 36 | "image_display_url": "", | ||
37 | "name": "multi-view-brain-networks", | 37 | "name": "multi-view-brain-networks", | ||
38 | "title": "Multi-View Brain Networks" | 38 | "title": "Multi-View Brain Networks" | ||
39 | } | 39 | } | ||
40 | ], | 40 | ], | ||
41 | "id": "a5281927-2954-4a25-b5a9-d3761217e0b2", | 41 | "id": "a5281927-2954-4a25-b5a9-d3761217e0b2", | ||
42 | "isopen": false, | 42 | "isopen": false, | ||
43 | "landing_page": "http://github.com/basiralab/HCAE", | 43 | "landing_page": "http://github.com/basiralab/HCAE", | ||
44 | "license_title": null, | 44 | "license_title": null, | ||
45 | "link_orkg": "", | 45 | "link_orkg": "", | ||
46 | "metadata_created": "2024-12-02T21:33:10.538466", | 46 | "metadata_created": "2024-12-02T21:33:10.538466", | ||
n | 47 | "metadata_modified": "2024-12-02T21:33:10.538471", | n | 47 | "metadata_modified": "2024-12-02T21:33:11.147659", |
48 | "name": "multi-view-brain-hyperconnectome", | 48 | "name": "multi-view-brain-hyperconnectome", | ||
49 | "notes": "Graph embedding is a powerful method to represent graph | 49 | "notes": "Graph embedding is a powerful method to represent graph | ||
50 | neurological data (e.g., brain connectomes) in a low dimensional space | 50 | neurological data (e.g., brain connectomes) in a low dimensional space | ||
51 | for brain connectivity mapping, prediction and classi\ufb01cation. | 51 | for brain connectivity mapping, prediction and classi\ufb01cation. | ||
52 | However, existing embedding algorithms have two major limitations. | 52 | However, existing embedding algorithms have two major limitations. | ||
53 | First, they primarily focus on preserving one-to-one topological | 53 | First, they primarily focus on preserving one-to-one topological | ||
54 | relationships between nodes (i.e., regions of interest (ROIs) in a | 54 | relationships between nodes (i.e., regions of interest (ROIs) in a | ||
55 | connectome), but they have mostly ignored many-to-many relationships | 55 | connectome), but they have mostly ignored many-to-many relationships | ||
56 | (i.e., set to set), which can be captured using a hyperconnectome | 56 | (i.e., set to set), which can be captured using a hyperconnectome | ||
57 | structure. Second, existing graph embedding techniques cannot be | 57 | structure. Second, existing graph embedding techniques cannot be | ||
58 | easily adapted to multi-view graph data with heterogeneous | 58 | easily adapted to multi-view graph data with heterogeneous | ||
59 | distributions. In this paper, while cross-pollinating adversarial deep | 59 | distributions. In this paper, while cross-pollinating adversarial deep | ||
60 | learning with hypergraph theory, we aim to jointly learn deep latent | 60 | learning with hypergraph theory, we aim to jointly learn deep latent | ||
61 | embeddings of subject-speci\ufb01c multi-view brain graphs to | 61 | embeddings of subject-speci\ufb01c multi-view brain graphs to | ||
62 | eventually disentangle di\ufb00erent brain states such as | 62 | eventually disentangle di\ufb00erent brain states such as | ||
63 | Alzheimer\u2019s disease (AD) versus mild cognitive impairment (MCI). | 63 | Alzheimer\u2019s disease (AD) versus mild cognitive impairment (MCI). | ||
64 | First, we propose a new simple strategy to build a hyperconnectome for | 64 | First, we propose a new simple strategy to build a hyperconnectome for | ||
65 | each brain view based on nearest neighbour algorithm to preserve the | 65 | each brain view based on nearest neighbour algorithm to preserve the | ||
66 | con-nectivities across pairs of ROIs. Second, we design a | 66 | con-nectivities across pairs of ROIs. Second, we design a | ||
67 | hyperconnectome autoencoder (HCAE) framework which operates directly | 67 | hyperconnectome autoencoder (HCAE) framework which operates directly | ||
68 | on the multi-view hyperconnectomes based on hypergraph convolutional | 68 | on the multi-view hyperconnectomes based on hypergraph convolutional | ||
69 | layers to better capture the many-to-many relationships between brain | 69 | layers to better capture the many-to-many relationships between brain | ||
70 | regions (i.e., graph nodes). For each subject, we further regularize | 70 | regions (i.e., graph nodes). For each subject, we further regularize | ||
71 | the hyper-graph autoencoding by adversarial regularization to align | 71 | the hyper-graph autoencoding by adversarial regularization to align | ||
72 | the distribution of the learned hyperconnectome embeddings with the | 72 | the distribution of the learned hyperconnectome embeddings with the | ||
73 | original hyperconnectome distribution. We formalize our | 73 | original hyperconnectome distribution. We formalize our | ||
74 | hyperconnectome embedding within a geometric deep learning framework | 74 | hyperconnectome embedding within a geometric deep learning framework | ||
75 | to optimize for a given subject, thereby designing an individual-based | 75 | to optimize for a given subject, thereby designing an individual-based | ||
76 | learning framework.", | 76 | learning framework.", | ||
n | 77 | "num_resources": 0, | n | 77 | "num_resources": 1, |
78 | "num_tags": 5, | 78 | "num_tags": 5, | ||
79 | "organization": { | 79 | "organization": { | ||
80 | "approval_status": "approved", | 80 | "approval_status": "approved", | ||
81 | "created": "2024-11-25T12:11:38.292601", | 81 | "created": "2024-11-25T12:11:38.292601", | ||
82 | "description": "", | 82 | "description": "", | ||
83 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 83 | "id": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
84 | "image_url": "", | 84 | "image_url": "", | ||
85 | "is_organization": true, | 85 | "is_organization": true, | ||
86 | "name": "no-organization", | 86 | "name": "no-organization", | ||
87 | "state": "active", | 87 | "state": "active", | ||
88 | "title": "No Organization", | 88 | "title": "No Organization", | ||
89 | "type": "organization" | 89 | "type": "organization" | ||
90 | }, | 90 | }, | ||
91 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | 91 | "owner_org": "079d46db-32df-4b48-91f3-0a8bc8f69559", | ||
92 | "private": false, | 92 | "private": false, | ||
93 | "relationships_as_object": [], | 93 | "relationships_as_object": [], | ||
94 | "relationships_as_subject": [], | 94 | "relationships_as_subject": [], | ||
t | 95 | "resources": [], | t | 95 | "resources": [ |
96 | { | ||||
97 | "cache_last_updated": null, | ||||
98 | "cache_url": null, | ||||
99 | "created": "2024-12-02T22:29:38", | ||||
100 | "data": [ | ||||
101 | "dcterms:title", | ||||
102 | "dcterms:accessRights", | ||||
103 | "dcterms:creator", | ||||
104 | "dcterms:description", | ||||
105 | "dcterms:issued", | ||||
106 | "dcterms:language", | ||||
107 | "dcterms:identifier", | ||||
108 | "dcat:theme", | ||||
109 | "dcterms:type", | ||||
110 | "dcat:keyword", | ||||
111 | "dcat:landingPage", | ||||
112 | "dcterms:hasVersion", | ||||
113 | "dcterms:format", | ||||
114 | "mls:task", | ||||
115 | "datacite:isDescribedBy" | ||||
116 | ], | ||||
117 | "description": "The json representation of the dataset with its | ||||
118 | distributions based on DCAT.", | ||||
119 | "format": "JSON", | ||||
120 | "hash": "", | ||||
121 | "id": "c0990e08-9414-4df8-824a-25363be0eb7c", | ||||
122 | "last_modified": "2024-12-02T21:33:11.140028", | ||||
123 | "metadata_modified": "2024-12-02T21:33:11.150607", | ||||
124 | "mimetype": "application/json", | ||||
125 | "mimetype_inner": null, | ||||
126 | "name": "Original Metadata", | ||||
127 | "package_id": "a5281927-2954-4a25-b5a9-d3761217e0b2", | ||||
128 | "position": 0, | ||||
129 | "resource_type": null, | ||||
130 | "size": 2545, | ||||
131 | "state": "active", | ||||
132 | "url": | ||||
133 | resource/c0990e08-9414-4df8-824a-25363be0eb7c/download/metadata.json", | ||||
134 | "url_type": "upload" | ||||
135 | } | ||||
136 | ], | ||||
96 | "services_used_list": "", | 137 | "services_used_list": "", | ||
97 | "state": "active", | 138 | "state": "active", | ||
98 | "tags": [ | 139 | "tags": [ | ||
99 | { | 140 | { | ||
100 | "display_name": "Multi-view brain networks", | 141 | "display_name": "Multi-view brain networks", | ||
101 | "id": "fbc24a97-d8ca-4047-b087-64cb93627747", | 142 | "id": "fbc24a97-d8ca-4047-b087-64cb93627747", | ||
102 | "name": "Multi-view brain networks", | 143 | "name": "Multi-view brain networks", | ||
103 | "state": "active", | 144 | "state": "active", | ||
104 | "vocabulary_id": null | 145 | "vocabulary_id": null | ||
105 | }, | 146 | }, | ||
106 | { | 147 | { | ||
107 | "display_name": "adversarial learning", | 148 | "display_name": "adversarial learning", | ||
108 | "id": "99edcfc0-6044-4ab4-a631-7ffbe7daf711", | 149 | "id": "99edcfc0-6044-4ab4-a631-7ffbe7daf711", | ||
109 | "name": "adversarial learning", | 150 | "name": "adversarial learning", | ||
110 | "state": "active", | 151 | "state": "active", | ||
111 | "vocabulary_id": null | 152 | "vocabulary_id": null | ||
112 | }, | 153 | }, | ||
113 | { | 154 | { | ||
114 | "display_name": "brain hyperconnectome", | 155 | "display_name": "brain hyperconnectome", | ||
115 | "id": "c6ae1c06-14b0-495d-8623-8034bff31a16", | 156 | "id": "c6ae1c06-14b0-495d-8623-8034bff31a16", | ||
116 | "name": "brain hyperconnectome", | 157 | "name": "brain hyperconnectome", | ||
117 | "state": "active", | 158 | "state": "active", | ||
118 | "vocabulary_id": null | 159 | "vocabulary_id": null | ||
119 | }, | 160 | }, | ||
120 | { | 161 | { | ||
121 | "display_name": "brain state classi\ufb01cation", | 162 | "display_name": "brain state classi\ufb01cation", | ||
122 | "id": "2838e443-12b3-4f93-8bc3-2d486c8ee5ee", | 163 | "id": "2838e443-12b3-4f93-8bc3-2d486c8ee5ee", | ||
123 | "name": "brain state classi\ufb01cation", | 164 | "name": "brain state classi\ufb01cation", | ||
124 | "state": "active", | 165 | "state": "active", | ||
125 | "vocabulary_id": null | 166 | "vocabulary_id": null | ||
126 | }, | 167 | }, | ||
127 | { | 168 | { | ||
128 | "display_name": "geometric hyperconnectome autoencoder", | 169 | "display_name": "geometric hyperconnectome autoencoder", | ||
129 | "id": "2c96681a-4bab-4bfd-b5f9-a123a6eb9620", | 170 | "id": "2c96681a-4bab-4bfd-b5f9-a123a6eb9620", | ||
130 | "name": "geometric hyperconnectome autoencoder", | 171 | "name": "geometric hyperconnectome autoencoder", | ||
131 | "state": "active", | 172 | "state": "active", | ||
132 | "vocabulary_id": null | 173 | "vocabulary_id": null | ||
133 | } | 174 | } | ||
134 | ], | 175 | ], | ||
135 | "title": "Multi-View Brain HyperConnectome", | 176 | "title": "Multi-View Brain HyperConnectome", | ||
136 | "type": "dataset", | 177 | "type": "dataset", | ||
137 | "version": "" | 178 | "version": "" | ||
138 | } | 179 | } |