Skip to content

Changes

View changes from to


On December 2, 2024 at 5:41:45 PM UTC, Gravatar admin:
  • Set author of MNIST Dataset to Yann LeCun (previously Anonymous authors)


  • Updated description of MNIST Dataset from

    The MNIST dataset consists of images of handwritten digits, used for training various image processing systems. In this paper, it is used to demonstrate the adversarial robustness of deep learning models through standard training and generative adversarial training.
    to
    The MNIST dataset (Lecun et al., 1998), which consists of 60,000 gray-scale images of handwritten digits. Each image has an accompanying label in {0, 1,..., 9}, and is stored as a 28 × 28 matrix that takes on values in [0, 255]. We first divide the entries of all the images by 255. Next, since there is no variation in the peripheral pixels of the images (Gallaugher & McNicholas, 2018), which violates model (1), we add an independent perturbation N (0, 0.01) to each element of the image. Finally, we vectorize each image to obtain a vector xi ∈ R784.


  • Added the following tags to MNIST Dataset


  • Changed value of field defined_in to https://doi.org/10.48550/arXiv.1504.06787 in MNIST Dataset


  • Changed value of field landing_page to http://yann.lecun.com/exdb/mnist/ in MNIST Dataset


  • Changed value of field citation to ['https://doi.org/10.48550/arXiv.2302.02373', 'https://doi.org/10.48550/arXiv.1409.5185', 'https://doi.org/10.48550/arXiv.1912.13464', 'https://doi.org/10.1109/TNNLS.2019.2919948', 'https://doi.org/10.48550/arXiv.1711.04574', 'https://doi.org/10.48550/arXiv.1503.07906', 'https://doi.org/10.48550/arXiv.1909.08190', 'https://doi.org/10.48550/arXiv.1911.01575', 'https://doi.org/10.48550/arXiv.2306.06130', 'https://doi.org/10.48550/arXiv.2301.12033', 'https://doi.org/10.48550/arXiv.1910.12204', 'https://doi.org/10.48550/arXiv.2102.08184', 'https://doi.org/10.48550/arXiv.2405.12755', 'https://doi.org/10.48550/arXiv.2404.16208', 'https://doi.org/10.24963/ijcai.2020/590', 'https://doi.org/10.48550/arXiv.1910.02758', 'https://doi.org/10.48550/arXiv.1904.09601', 'https://doi.org/10.48550/arXiv.2212.13345', 'https://doi.org/10.48550/arXiv.2305.11650', 'https://doi.org/10.48550/arXiv.2209.11350', 'https://doi.org/10.48550/arXiv.2102.04426', 'https://doi.org/10.48550/arXiv.2205.15268', 'https://doi.org/10.48550/arXiv.2311.06372', 'https://doi.org/10.48550/arXiv.1805.06605', 'https://doi.org/10.48550/arXiv.2405.15727', 'https://doi.org/10.48550/arXiv.2304.02798', 'https://doi.org/10.48550/arXiv.2203.15267', 'https://doi.org/10.48550/arXiv.1811.11479', 'https://doi.org/10.48550/arXiv.1501.05494', 'https://doi.org/10.14722/ndss.2022.24058', 'https://doi.org/10.48550/arXiv.2207.04974', 'https://doi.org/10.48550/arXiv.2110.09164', 'https://doi.org/10.48550/arXiv.2007.01028', 'https://doi.org/10.48550/arXiv.2004.09388', 'https://doi.org/10.48550/arXiv.1611.02268', 'https://doi.org/10.1109/OJSP.2023.3349111', 'https://doi.org/10.48550/arXiv.2308.14930', 'https://doi.org/10.48550/arXiv.2303.16955', 'https://doi.org/10.48550/arXiv.2105.04801', 'https://doi.org/10.48550/arXiv.2107.01622', 'https://doi.org/10.48550/arXiv.1910.04958', 'https://doi.org/10.48550/arXiv.1709.09890', 'https://doi.org/10.48550/arXiv.1610.06249', 'https://doi.org/10.48550/arXiv.2010.00352', 'https://doi.org/10.48550/arXiv.2403.08124', 'https://doi.org/10.48550/arXiv.2401.15874', 'https://doi.org/10.48550/arXiv.2103.06797', 'https://doi.org/10.48550/arXiv.1807.05832', 'https://doi.org/10.48550/arXiv.2012.10547', 'https://doi.org/10.48550/arXiv.2102.02611', 'https://doi.org/10.1109/ICIP40778.2020.9190968', 'https://doi.org/10.48550/arXiv.2311.15603', 'https://doi.org/10.48550/arXiv.1602.02697', 'https://doi.org/10.48550/arXiv.2306.02174', 'https://doi.org/10.48550/arXiv.1903.07705', 'https://doi.org/10.48550/arXiv.2007.06661', 'https://doi.org/10.1016/j.knosys.2021.106816', 'https://doi.org/10.48550/arXiv.2103.16194', 'https://doi.org/10.48550/arXiv.2401.11694'] in MNIST Dataset


  • Deleted resource Original Metadata from MNIST Dataset


  • Deleted resource Original Metadata from MNIST Dataset



Before browse our site, please accept our cookies policy