You're currently viewing an old version of this dataset. To see the current version, click here.

ShapeNet

Generating a 3D point cloud from a single 2D image is of great importance for 3D scene understanding applications. To reconstruct the whole 3D shape of the object shown in the image, the existing deep learning based approaches use either explicit or implicit generative modeling of point clouds, which, however, suffer from limited quality.

Data and Resources

Cite this as

Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, Sanja Fidler (2024). Dataset: ShapeNet. https://doi.org/10.57702/7p5czilj

DOI retrieved: November 25, 2024

Additional Info

Field Value
Created November 25, 2024
Last update December 2, 2024
Defined In https://doi.org/10.48550/arXiv.2012.02190
Citation
  • https://doi.org/10.48550/arXiv.1808.03247
  • https://doi.org/10.48550/arXiv.2106.15325
  • https://doi.org/10.48550/arXiv.2010.13938
  • https://doi.org/10.48550/arXiv.1912.10545
  • https://doi.org/10.48550/arXiv.2210.15059
  • https://doi.org/10.48550/arXiv.2009.01280
  • https://doi.org/10.48550/arXiv.1803.11493
  • https://doi.org/10.48550/arXiv.2203.09516
  • https://doi.org/10.48550/arXiv.2111.05529
  • https://doi.org/10.48550/arXiv.2406.05038
  • https://doi.org/10.48550/arXiv.1612.00603
  • https://doi.org/10.48550/arXiv.2007.15855
  • https://doi.org/10.48550/arXiv.2307.14354
  • https://doi.org/10.48550/arXiv.2307.05325
  • https://doi.org/10.48550/arXiv.1908.06295
  • https://doi.org/10.48550/arXiv.2210.11277
  • https://doi.org/10.1007/978-3-030-58604-1_30
  • https://doi.org/10.48550/arXiv.2111.04276
  • https://doi.org/10.48550/arXiv.2209.00682
  • https://doi.org/10.48550/arXiv.2405.03221
  • https://doi.org/10.48550/arXiv.1703.09859
  • https://doi.org/10.48550/arXiv.2110.06421
  • https://doi.org/10.48550/arXiv.2404.00875
  • https://doi.org/10.48550/arXiv.2212.14197
  • https://doi.org/10.48550/arXiv.1708.04672
  • https://doi.org/10.48550/arXiv.1808.00671
  • https://doi.org/10.48550/arXiv.1904.07601
  • https://doi.org/10.1109/TPAMI.2018.2868195
  • https://doi.org/10.48550/arXiv.2102.07373
  • https://doi.org/10.48550/arXiv.2209.05924
  • https://doi.org/10.1145/3469877.3490611
  • https://doi.org/10.48550/arXiv.1908.04725
  • https://doi.org/10.48550/arXiv.2306.08226
  • https://doi.org/10.48550/arXiv.2210.04072
  • https://doi.org/10.48550/arXiv.1904.12304
  • https://doi.org/10.48550/arXiv.2108.01411
  • https://doi.org/10.48550/arXiv.1908.06277
  • https://doi.org/10.48550/arXiv.2007.11679
  • https://doi.org/10.48550/arXiv.2202.08345
  • https://doi.org/10.48550/arXiv.2303.01736
  • https://doi.org/10.48550/arXiv.1710.10473
  • https://doi.org/10.48550/arXiv.2006.10187
  • https://doi.org/10.48550/arXiv.1908.07423
  • https://doi.org/10.48550/arXiv.2304.03999
  • https://doi.org/10.48550/arXiv.2204.02320
  • https://doi.org/10.1145/3618317
  • https://doi.org/10.48550/arXiv.2009.08255
  • https://doi.org/10.48550/arXiv.2010.11378
  • https://doi.org/10.48550/arXiv.1901.05103
  • https://doi.org/10.48550/arXiv.1706.07036
  • https://doi.org/10.48550/arXiv.2308.16484
  • https://doi.org/10.48550/arXiv.2401.17603
  • https://doi.org/10.48550/arXiv.2111.04237
  • https://doi.org/10.48550/arXiv.2406.02202
  • https://doi.org/10.48550/arXiv.2102.04776
  • https://doi.org/10.48550/arXiv.2004.12232
  • https://doi.org/10.48550/arXiv.2109.01605
  • https://doi.org/10.48550/arXiv.2005.09382
  • https://doi.org/10.48550/arXiv.2306.08659
  • https://doi.org/10.48550/arXiv.2102.05984
  • https://doi.org/10.48550/arXiv.1803.08495
  • https://doi.org/10.48550/arXiv.2008.01936
  • https://doi.org/10.48550/arXiv.2311.17938
  • https://doi.org/10.48550/arXiv.1903.00709
  • https://doi.org/10.48550/arXiv.2011.14289
  • https://doi.org/10.48550/arXiv.2008.06967
  • https://doi.org/10.48550/arXiv.2203.14714
  • https://doi.org/10.48550/arXiv.1909.09287
  • https://doi.org/10.48550/arXiv.2012.00230
  • https://doi.org/10.48550/arXiv.2403.12019
  • https://doi.org/10.48550/arXiv.1910.08207
  • https://doi.org/10.48550/arXiv.1811.07246
  • https://doi.org/10.48550/arXiv.1604.06079
  • https://doi.org/10.48550/arXiv.1911.09930
  • https://doi.org/10.1145/3581783.3611767
  • https://doi.org/10.48550/arXiv.1812.02716
Author Tianchang Shen
More Authors
Jun Gao
Kangxue Yin
Ming-Yu Liu
Sanja Fidler
Homepage https://shapenet.org/